Áp dụng BĐT Bunhiacốpski, ta có:
\(\left|x-y\right|=\left|x.1+2y.\left(-\frac{1}{2}\right)\right|\le\sqrt{\left(x^2+4y^2\right)\left(1+\frac{1}{4}\right)}=\frac{\sqrt{5}}{2}\) vì \(x^2+4y^2=1\)
Áp dụng BĐT Bunhiacốpski, ta có:
\(\left|x-y\right|=\left|x.1+2y.\left(-\frac{1}{2}\right)\right|\le\sqrt{\left(x^2+4y^2\right)\left(1+\frac{1}{4}\right)}=\frac{\sqrt{5}}{2}\) vì \(x^2+4y^2=1\)
Cho hai số thực không âm a, y thỏa mãn \(\sqrt{x}+\sqrt{y}=1\).
Chứng minh rằng \(xy\left(x+y\right)^2\le\frac{1}{64}\).
Cho x,y>0 Chứng minh rằng:\(\left(x+1\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge256\)
1. Cho a,b,c,d là các số dương. Chứng minh rằng: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
2. Cho (x;y;z) và (a;b;c) là các số dương. Chứng minh rằng: \(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
3. Cho \(c>0\) và \(a,b\ge c\). Chứng minh rằng: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}2y\left(4y^2+3x^2\right)=x^4\left(x^2+3\right)\\2012^x\left(\sqrt{2y-2x+5}-x+1\right)=4024\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\\2x+\frac{1}{x+y}=1\end{matrix}\right.\)
\(\left(x+1\right)\left(x-y+5\right)+4-2y=\sqrt{y-1}-\sqrt{x+2}\). Chứng minh \(M=4y-x-xy+2008\)
Giải hệ:
\(\left\{{}\begin{matrix}x^2+y^2+xy=5\\27x^3+6y^2x=2+y^3+30x^2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\), \(\left\{{}\begin{matrix}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\\2\left(2x+\sqrt{y}\right)=\sqrt{2x+6}-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2y-3x-1=3x\sqrt{y}\left(\sqrt{1-x}-1\right)^3\\\sqrt{8x^2-3xy+4y^2}+\sqrt{xy}=4y\end{matrix}\right.\)
Cho các số a,b,c là các số k âm sao cho tổng hai số bất kì đều dương.CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+\frac{16\sqrt{ab+bc+ac}}{a+b+c}\ge8\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng \(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho x,y là hai số dương. Chứng minh rằng:
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}+\frac{x+y}{2}\le\frac{1}{4}\)
Cho x,y,z>0 thỏa mãn \(x+y+z=xyz=1,\)chứng minh rằng:
\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)