\(\Delta'=1+m\ge0\Rightarrow m\ge-1\)
\(P=x^4_1+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\)
\(=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2\left(x_1x_2\right)^2\)
\(=\left(4+2m\right)^2-2m^2\)
\(=2m^2+16m+16\)
\(P=2\left(m^2+8m+7\right)+2=2\left(m+1\right)\left(m+7\right)+2\)
Do \(m\ge-1\Rightarrow\left(m+1\right)\left(m+7\right)\ge0\)
\(\Rightarrow P\ge2\Rightarrow P_{min}=2\) khi \(m=-1\)