Bạn xem lại đề. Với $x_1=0,5$ và $x_2=0,6$ thì \((x_1+x_2)^2>4x_1x_2\) nhưng \(x_1^2+x_2^2< 2(x_1+x_2)\)
Bạn xem lại đề. Với $x_1=0,5$ và $x_2=0,6$ thì \((x_1+x_2)^2>4x_1x_2\) nhưng \(x_1^2+x_2^2< 2(x_1+x_2)\)
Câu 1: Chứng minh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1)n}\) với ∀n∈\(N^*\)
Câu 2: Cho a,b,c là các số thực dương. Chứng minh rằng: \(\frac{a^4+b^4+c^4}{a+b+c}\geq abc\).
Câu 3: Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng: \(\sqrt{a^6+b^6+1}+\sqrt{b^6+c^6+1}+\sqrt{c^6+a^6+1}\geq 3\sqrt{3}\)
Câu 4: Cho các số thực không âm a,b,c thỏa mãn \(a+b+c=3\).Chứng minh rằng: \(a^3+b^3+c^3\geq 3\)
Câu 5: Với \(a,b,c>0\) thỏa mãn điều kiện \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng: \(\sqrt\frac{b}{a}+\sqrt\frac{c}{b}+\sqrt\frac{a}{c}\leq 1\)
bài 13: tìm tất các giá trị của tham số m để phương trình sau có hai nghiệm âm dương phân biệt
a) x2+2(m-1)x+3m-3=0
b)x2+(m-2)x+m-1=0
c) x2+(m-2)x+m+1=0
d)-x2-(m-3)x+m+1=0
e)4x2+2(m-1)x+m-1=0
f)(m-2)x2-2(m-2)x+1=0
Cho a,b,x,y∈R thoả mãn a2+b2=x2+y2=1.
Chứng minh rằng:
\(-\sqrt{2}\) ≤ a(x+y)+b(x-y) ≤\(\sqrt{2}\)
bài 13: tìm tất các giá trị của tham số m để phương trình sau có hai nghiệm dương
a) x2+(-2m-1)x-m+1=0
b)x2+(m+2)x-2m+1=0
c) 4x2+4(m+1)x+4m+1=0
d)-4x2+4(2m-1)x-m=0
e)-x2+(m+1)x-m=0
f)(m-2)x2+2(2m-3)x+5m-6=0
Cho x ; y là các số thực dương thỏa mãn
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
Chứng minh rằng :
\(\sqrt{x}+\sqrt{y}\ge4\)
Cho \(x;y;z\) là các số thực dương . Chứng minh rằng \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
bài 13: tìm tất các giá trị của tham số m để phương trình sau có hai nghiệm âm
a) x2+(2m-1)x+m+1=0
b)-x2+(m-2)x+2m-1=0
c) x2+mx+m-3/4=0
d)4x2+4(2m-1)x+m=0
e)x2-(m+1)x+m-1=0
f)(m-2)x2-2(m-2)x+1=0
Các thầy cô giúp dùm em với ạ
Cho 2 số không âm x, y thỏa mãn x2 + y2 = x+y+xy. Biết rằng tập giá trị của biểu thức S = x+ y là [m ; n]. Tính giá trị của biểu thức m2+n2
A. 16. B. 13 C. 25 D. 34
Cho các số thực dương \(a;b;c\) và thỏa mãn: \(a+b+c=1\). Chứng minh rằng :
\(\dfrac{a}{a+2.\sqrt{a+bc}}+\dfrac{b}{b+2.\sqrt{b+ac}}+\dfrac{c}{c+2.\sqrt{c+ab}}\le\dfrac{3}{5}\)
P/s: Em nhờ quý thầy cô và các bạn hỗ trợ và giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Cho 2 số thực dương \(x;y\) và \(x>y\). Chứng minh rằng \(x+2y+\dfrac{216}{\left(x-y\right).\left(3y+2\right)}\ge16\)