\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(=x^3-3x^2y+3xy^2-y^3-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)^2\)
Có: x - y = 11 \(\Rightarrow\left(x-y\right)^3-\left(x-y\right)^2=11^3-11^2=1210\)
Vậy M = 1210
\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(=\left[x^3-3xy\left(x-y\right)-y^3\right]-\left[x^2-2xy+y^2\right]\)
\(=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay \(x-y=11\) vào \(\left(x-y\right)^3-\left(x-y\right)^2\) , ta được :
\(\left(x-y\right)^3-\left(x-y\right)^2\)\(=11^3-11^2=1210\)