Ta có : x+y+z = 0
\(\Rightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=\left(-z\right)^3\)
\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)\)
\(\Leftrightarrow x^3+y^3+z^3=3xyz\)
x + y + z = 0
x + y = -z
( x + y )3 = ( -z )3
x3 + 3x2y +3xy2 + y3 = -z3
x3 + y3 + z3 = 3x2y - 3xy2
x3 + y3 + z3 = - 3xy ( x + y )
x3 + y3 + z3 = -3xy. ( -z )
x3 + y3 + z3 = 3xyz ( đpcm )