điều kiện \(a\ne3\)
a) ta có : \(x=\dfrac{a}{a-3}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a-3< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a>3\\a< 0\end{matrix}\right.\)
vậy \(a>3\) hoặc \(a< 0\)
b) ta có : \(\dfrac{a}{a-3}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a-3>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0< a< 3\\a\in\varnothing\end{matrix}\right.\)
vậy \(0< a< 3\)