Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
1.Cho tam giác ABC cân tại A góc A = 108 độ .Vẽ tia phân giác AD và BE : chứng minh AD = 1/2 BE
2. Chọ hình thang ABCD , AB < CD,AB // CD .M là trung điểm của AB . Kẻ MH // AD ( H thuộc BD). Kẻ MK // BC (K thuộc AC).KE dường thẳng đi qua H và vuông góc với MH.Đường thẳng đi qua K và vuông góc với MK .Hai đường thẳng đó cắt nhau tại I.Chứng minh
MÌNH MỚI HỌC ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG VÀ TAM GIÁC . GIÚP MÌNH NHÉ !
Câu 1 :
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần
lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của
C xuống đường thẳng AB và AD.
a) Tứ giác BEDF là hình gì ? Hãy chứng minh điều đó ?
b) Chứng minh rằng : CH.CD = CB.CK
c) Chứng minh rằng : AB.AH + AD.AK = AC2
Bài 1: Cho hình thanh ABC ( AB//CD) trong đó 2 đường phân giác của các góc A và B cắt nhau tại điểm K thuộc đáy CD. CMR: tổng 2 cạnh bên = đáy CD của hình thang
Bài 2: Cho tam giác ABC .Trên tia đối của tia AB lấy D sao cho AD=AC. Trên tia đối của tia AC láy điểm E sao cho AE=AC. CMR: BCDE là hình thang
Bài 3: Cho tứ giác ABCD có CB=CD,đường chéo BD là tia pg của góc ADC. CMR: ABCD là hình thang
Bài 4: Cho hình thang ABCD ( AB//CD;AB <CD) ,các tia pg của các góc A và D cắt ngau tại I,các tia pg của các góc B và C cắt nhau tại J
a) CMR: AI vuông góc với DJ và BJ vuông góc với CJ
b) Gọi E là gđ cỉa AI và BJ,giả sử E thuocj cạnh CD.CMR: CD=AD+BC
giúp mình với m.n ơi,mình cần gấp,vẽ hình,ghi rõ dùm mình
Baif 1: Cho hình thanh ABC ( AB//CD) trong đó 2 đường phân giác của các góc A và B cắt nhau tại điểm K thuộc đáy CD. CMR: tổng 2 cạnh bên = đáy CD của hình thang
Bài 2: Cho tam giác ABC .Trên tia đối của tia AB lấy D sao cho AD=AC. Trên tia đối của tia AC láy điểm E sao cho AE=AC. CMR: BCDE là hình thang
Bài 3: Cho tứ giác ABCD có CB=CD,đường chéo BD là tia pg của góc ADC. CMR: ABCD là hình thang
Bài 4: Cho hình thang ABCD ( AB//CD;AB <CD) ,các tia pg của các góc A và D cắt ngau tại I,các tia pg của các góc B và C cắt nhau tại J
a) CMR: AI vuông góc với DJ và BJ vuông góc với CJ
b) Gọi E là gđ cỉa AI và BJ,giả sử E thuộc cạnh CD.CMR: CD=AD+BC
giúp mình với m.n ơi,mình cần gấp,vẽ hình,ghi rõ dùm mình
Dựa vào định lí Ta-lét thuận để làm các bài sau:
Bài 1: Cho hình thang ABCD( AD // BC), cắt đường chéo tại O. CMR: OA . OD = OB . OC
Bài 2: Cho ΔABC, AB < AC. Đường phân giác AD, qua trung điểm M của BC kẻ đường thẳng song song với AD cắt AC và AB lần lượt tại E, K . CMR:
a, AE = AK
b, BK = CE
Cho tam giác ABC vuông tại A các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D và E là chân các đường vuông góc kẻ từ I đến AB; AC.
a) Chứng minh: AD= AE b) Cho AB= 6cm; AC=8cm. Tính ADcho tam giác ABC . Trên nửa mặt phẳng chứa đỉnh C , Có bờ là đường thẳng AB , kẻ đường thẳng AE vuông góc với AB và AE = AB . Trên nửa mặt phẳng chứa đỉnh B có bờ là đường thẳng AC , kẻ đoạn thẳng AF vuông góc AC và AF= AC . Kẻ AD vuông góc BC ( D thuộc BC ) . EF cắt AD ở M . Chứng minh :
a, M là trung điểm của EF
b, FB vuông góc EC và FB = EC
cho tam giác ABC . Trên nửa mặt phẳng chứa đỉnh C , Có bờ là đường thẳng AB , kẻ đường thẳng AE vuông góc với AB và AE = AB . Trên nửa mặt phẳng chứa đỉnh B có bờ là đường thẳng AC , kẻ đoạn thẳng AF vuông góc AC và AF= AC . Kẻ AD vuông góc BC ( D thuộc BC ) . EF cắt AD ở M . Chứng minh :
a, M là trung điểm của EF
b, FB vuông góc EC và FB = EC