3) Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.a) Chứng minh: AMNC là hình thang, tính AC, biết MN = 3cm.b) Chứng minh: PQ ∥AC.c) Chứng minh: MN ∥PQ và MN = PQ.d) MQ = NP và MQ ∥NP.
cho tứ giác ABCD có AC = BD, Gọi M, N , P, Q lần lượt là trung điểm của AB, BC, CD, DA
1) MN=NP=PQ=QM
2) CM MNPQ là hình thoi
Cho tứ giác ABCD có AC = BD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA
a. Chứng minh MN // AC và MN \(=\frac{1}{2}\)AC
b. Chứng minh MN =PQ và tứ giác MNPQ hình bình hành
c. Chứng minh MQ = NP
cho tứ giác abcd gọi m n p q lần lượt là trung điểm ab bc cd da. chứng minh mn= qp
Cho hình vuông ABCD. Gọi I, K theo thứ tự là trung điểm của các cạnh AB, CD. Nối CI, AK. CMR: a) Tứ giác AICK là hình bình hành. b) Gọi M là trung điểm của BC. Gọi P, Q lần lượt là giao điểm của DM với IC và AK. CMR: DM = AK và DM vuông AK
Cho tứ giác ABCD có AD=BC, 2 cạnh AD và BC không song song với nhau. M, N lần lượt là trung điểm của AB và CD. Đường thẳng AD cắt MN tại E, đường thẳng BC cắt MN tại F. Chứng minh rằng góc AEM=góc BFM.
Cho hình thang ABCD (AB//CD). Gọi M, N lần lượt là trung điểm của AD và BC. Biết AB = 3cm và MN = 7 cm. Độ dài cạnh CD là:
A. 10cm
B. 5cm
C. 20cm
D. 11cm
Cho hình bình hành ABCD. Gọi o là giao điểm hai đường thẳng ac và bd. Qua điểm O vẽ đường thẳng song song với AB cắt hai cạnh AD, BC lần lượt tại M, N. Trên AB, CD lần lượt lấy các điểm P, Q sao cho AP = CQ. Chứng minh:
a) Các tứ giác AMNB, APCQ là hình bình hành
b) MP // NQ; MQ = NP