Bài 8: Cho hình thang ABCD (AB // CD). Gọi E, F, K lần lượt là trung điểm của AD, BC, BD
a) Chứng minh EK // AB // KF và E, F, K thẳng hàng
b) Gọi I là giao điểm của EF và AC. Chứng minh rằng IA = IC
Cho hình thang ABCD có đáy AB, CD. Gọi E, F, K lần lượt là trung điểm của AD, BC, BD.
a) Chứng minh tứ giác ABFE là hình thang.
b) Chứng minh AB // KF.
c) Cho AB = 4cm. Tính KE.
d) Chứng minh K, E, F thẳng hàng.
Cho tứ giác ABCD có E , F lần lượt là trung điểm của AD , BC và 2EF = AB + CD . Chứng minh ABCD là hình thang
Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
2*đừng để ý
Cho hình thang ABCD (AB // CD). Gọi E, F lần lượt là trung điểm của AD, BC. Đường thăng EF cắt BC, AC lần lượt tại I, K.
a) Chứng minh AK = KC, BI = ID.
b) Chứng minh EI =KF.
c) Cho AB = 6cm, CD = 10cm. Tính các độ dài EI, KF, IK.
d) Chứng minh K, E, F thẳng hàng.❤❤><
Cho tứ giác ABCD. Đường thẳng AB cắt đường thẳng CD tại E, đường thẳng BC cắt đường thẳng AD tại F. Gọi I, J, K, L lần lượt là trung điểm của AE, CE, CF, AF. Chứng minh rằng IL// JK.
Cho hình thang ABCD (AB // CD). Gọi E; F lần lượt là trung điểm của AD và BC. Biết rằng DE + EF + FC = a. Tính chu vi hình thang ABCD.
Hình thang ABCD (BC//AD). Gọi E, F theo thứ tự là trung điểm của AB, CD; M, N lần lượt là giao điểm của AC với EF; BD với EF. Biết AD = 24cm, BC = 19cm. Tính EM, MN, NF
cho tứ giác ABCD. Gọi E,F lần lượt là trung điểm của AD, BC sao cho EF= \(\dfrac{AB+CD}{2}\). Hỏi tứ giác AbCD là hình gì ?Vì sao?