Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của AB và CD. G là trọng tâm của tam giác BCD. Tìm giao điểm của EG với (ACD)
giúp mình giải những bài này vs, mình đg cần gấp, thanks.
bài 1: Cho tứ diện ABCD . Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD.
1. Tìm giao tuyến của hai mặt phẳng (CG1G2) và (ABD).
2. Chứng minh rằng G1G2 song song mặt phẳng (ABC).
bài 2: cho tứ dện ABCD có G là trọng tâm. Gọi A1 là trọng tâm của tam giác BCD
a. CMR: A, G, A1 thẳng hàng
b. CMR: GA=3GA'
bài 3: cho tứ diện ABCD và 3 điểm P,Q,R lần lượt là trung điểm của các cạnh AB, CD; P là điểm nằm trên cạnh AD nhưng không trùng với trùng với trung điểm của AD. Tìm thiết diện của tứ diện cắt bởi (MNP)
Cho tứ diện ABCD. Gọi M, N, P lần lượt thuộc các cạnh AB, AC, AD sao cho AM = 2MB, AN = NC và AP = 3PD. Gọi I là trọng tâm tam giác BCD và S là giao điểm của (MNP) và đường thẳng AI. Tính \(\dfrac{AI}{AS}\)
Cho tứ diện ABCD. I và J theo thứ tự là trung điểm của AD và AC, G là trọng tâm tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GID) và (BCD). Tìm thiết diện của mặt phẳng (GIJ) với hình chóp ABCD. Thiết diện là hình gì
Cho tứ diện ABCD. Gọi G1, G2 là trọng tâm tam giác BCD và ACD. Gọi I, J, K là trung điểm BD, AD, CD, tìm giao tuyến của (G1 G2 C) và (ADB), (G1G2B) và ( ACD), ( ABK) và (CIJ)
Cho tứ diện đều ABCD Cạnh a. Gọi G là trọng tâm △ABD, điểm M,H lần lượt thuộc cạnh CD, AD sao cho DM=2MC, DH=2HA. Gọi E là giao điểm DG và BH. Mặt phẳng (α) đi qua E song song (ABC) cắt BM tại F. Tính EF ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a, tâm O, SA = SB = 4a. Gọi G là trọng tâm tam giác BCD, (α) là mặt phẳng qua G và song song với (SAD). Tính diện tích thiết diện của (α) và hình chóp.
Cho tứ diện đều ABCD cạnh a, G là trọng tâm tam giác BDC. Mặt phẳng qua A, G và song song với BC cắt DB và DC lần lượt tại M và N. Tính diện tích tam giác AMN
cho hình chóp S.ABCD có đáy ABCD là hình bình hành .Gọi O là giao điểm của AC và BD .M và N lần lượt là trung điểm của CD và SA . G là trọng tâm tam giác SAB .Gọi \(\Delta\) là giao tuyến của 2 mặt phẳng (SAD) và (SMG),P là giao điểm của đường thẳng OG và \(\Delta\) .Chứng minh P,N ,D thẳng hàng