Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAB; I và M lần lượt là trung điểm của AB và SD.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)
b) Gọi N là giao điểm DI và AC. Chứng minh rằng NG song song với (SCD)
c)Tìm giao điểm E của SO và (CGM). Tính tỉ số \(\frac{SE}{SO}\)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành . Gọi M,N lần lượt là trung điểm của SA và CD. Hãy tìm :
1) Giao tuyến của hai mặt phẳng ( BMN ) và ( SAD )
2) Giao điểm của đường thẳng SC và (BMN)
Cho hình chóp S ABCD . có đáy ABCD là hình thang với đáy lớn là AB , AB=2CD . Gọi O là giao điểm của AC và BD , G là trọng tâm tam giác SBC .
a. Chứng minh rằng CD // ( SAB )
b. Xác định giao tuyến của hai mặt phẳng ( SAD ) và ( SBD )
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SA và \(\Delta\) là đường thẳng qua M song song với mặt phẳng (SBD) và cắt BC. Gọi I, J lần lượt là giao điểm của \(\Delta\) với BC và mặt phẳng (SCD). Tính tỉ số MI/MJ
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi H và K
lần lượt là trung điểm của SA và SC, G là trọng tâm của tam giác ABC.
a) Tìm giao tuyến của (GHK) và (ABCD).
b) Tìm giao điểm M của SD và (GHK).
c) Gọi E trung điểm của HK. Chứng minh G, E, M thẳng hàng.
Đề toán: Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O.
a/ Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).
b/ Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).
c/ Gọi M, N lần lượt là trung điểm của SA và SB, K là một điểm nằm giữa B và C. Tìm thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK).
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi O là giao điểm của AC và BD , M và N lần lượt là trung điểm của SA và SC. Tìm giao tuyến của mặt phẳng (SBN) Và mặt phẳng (SDM) .
Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M , N , P lần lượt là trung điểm SA , SB , SC
a ) Tìm giao tuyến của ( DMP ) và ( ABCD )
b ) Tìm giao tuyến của ( DMP ) và ( SBC )
c ) Tìm giao điểm của SB và ( DMP )
d ) Chứng minh MP / ( ABCD ) và MN / ( SCD )
e ) Cm : ( MNP ) // ( ABCD ) .
f ) Gọi Q là trung điểm MN . Chứng minh PQ / ( ABCD )
g ) Tìm thiết diện của ( MNP ) với S.ABCD