Xét ΔICD có IK là đường trung tuyến
nên \(\overrightarrow{IK}=\dfrac{1}{2}\left(\overrightarrow{IC}+\overrightarrow{ID}\right)=\dfrac{1}{2}\cdot\overrightarrow{IC}+\dfrac{1}{2}\cdot\overrightarrow{ID}\)
=>I,K,C,D đồng phẳng
Xét ΔICD có IK là đường trung tuyến
nên \(\overrightarrow{IK}=\dfrac{1}{2}\left(\overrightarrow{IC}+\overrightarrow{ID}\right)=\dfrac{1}{2}\cdot\overrightarrow{IC}+\dfrac{1}{2}\cdot\overrightarrow{ID}\)
=>I,K,C,D đồng phẳng
Chỉ câu d thoi ạ Cho tứ diện ABCD. Gọi I và K lần lượt là trung điểm của AB và CD. J là một điểm trên đoạn AD sao cho AD = 3JD.a) Tìm giao điểm F của đường thẳng AC và mặt phẳng BCD b) Tìm giao tuyến d của hai mặt phẳng IJK và ABC. c) chứng minh AC, KJ và d đồng quy d) Gọi O là trung điểm IK và G là trọng tâm tam giác BCD. Chứng minh A,O,G thẳng hàng.
Cho tứ diện ABCD. Gọi I và J lần lượt là trung điểm của AC và BC. Trên cạnh BD lấy điểm K sao cho BK = 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính FA/FD
Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là các điểm trên cạnh AB, BC, CD, DA sao cho \(\dfrac{MA}{MB}=\dfrac{PD}{PC}\) và \(\dfrac{NB}{NC}=\dfrac{QA}{QD}\). Chứng minh: 4 điểm M, N, P, Q đồng phẳng
Cho tứ diện ABCD, M và N lần lượt là trung điểm của AB và CD, P là điểm trên cạnh AD sao cho \(AP=\dfrac{1}{4}AD\) Mặt phẳng (MNP) cắt BD tại I. Tính tỷ số \(\dfrac{ID}{IB}\)
giúp mình giải những bài này vs, mình đg cần gấp, thanks.
bài 1: Cho tứ diện ABCD . Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD.
1. Tìm giao tuyến của hai mặt phẳng (CG1G2) và (ABD).
2. Chứng minh rằng G1G2 song song mặt phẳng (ABC).
bài 2: cho tứ dện ABCD có G là trọng tâm. Gọi A1 là trọng tâm của tam giác BCD
a. CMR: A, G, A1 thẳng hàng
b. CMR: GA=3GA'
bài 3: cho tứ diện ABCD và 3 điểm P,Q,R lần lượt là trung điểm của các cạnh AB, CD; P là điểm nằm trên cạnh AD nhưng không trùng với trùng với trung điểm của AD. Tìm thiết diện của tứ diện cắt bởi (MNP)
1.Cho hình chóp SA..ABCD có đáy ABCD là hình bình hành. Gọi E là trung điểm của SC.Tìm giao tuyến của 2 mặt phẳng (ABE) và (SBD)
2.Cho tứ diện ABCD. Gọi I,J lần lượt là trung điểm của AC và BC, K thuộc BD sao cho KD<KB. Tìm giao tuyến của 2 mặt phẳng:
a,(IJK) và (ACD)
b,(IJK) và (ABD)
BT1:Cho hình chóp S.ABC,gọi M,N laanf lượt là trung điểm SC,AB.
1,Xác định giao tuyến của 2 mặt phẳng (MAB) và (NSC)
2,Gọi I,J là 2 điểm lần lượt nằm trên 2 cạnh SA và SB.Xác định giao tuyến của 2 mặt phẳng (MAB) và (IJC)
BT2:Cho tứ diện ABCD,gọi I,J lần lượt là trung điểm của AC và SB,K\(\in\)BD sao cho KD<KB.Tìm giao tuyến của 2 mặt phẳng:
1,(IJK) và (ACD)
2,(IJK) và (ABD)
Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M là trung điểm cạnh SA và (a) là mặt phẳng chứa OM song song với AD. Gọi N,P,Q lần lượt là giao điểm của (a) với các cạnh SD, CD và AB.
1/ Thiết diện của (a) với hình chóp là gì?
2/ Chứng minh SB // (a).
3/ Giả sử SBC là tam giác đều. Tính số đo các góc của tứ giác MNPQ.
Cho tứ diện ABCD.Gọi I và J lần lượt là trung điểm của AC và BC:Trên cạnh BD,ta lấy điểm K sao cho BK=2KD a)Tìm giao điểm E của đường thẳng CD với mp(IJK) b)Tìm giao điểm F của đường thẳng AD với mp(IJK) c)Cm rằng FK // IJ