1. Cho hình chóp S.ABCD có đáy là một hình bình hành. Gọi G là trọng tâm tam giác SAC. M là một điểm thay đổi trong miền hình bình hành ABCD. Tia MG cắt mặt bên của hình chóp tại điểm N đặt \(Q=\frac{MG}{NG}+\frac{NG}{MG}\)
a, tìm tất cả các vị trí của điểm M sao cho Q đạt giá trị nhỏ nhất
b, tìm giá trị lớn nhất của Q
2. Cho tứ diện ABCD có hai cạnh đối bằng b,c và các cạnh còn lại bằng a. Tìm giá trị nhỏ nhất của tổng khoảng cách từ một điểm tùy ý trong không gian đến các đỉnh của tứ diện
1. Cho tứ diện ABCD có các cặp cạnh đối bằng nhau từng đôi một \(AB=CD,AC=BD,BC=AD\) Chứng minh với mọi điểm M trong không gian ta đều có \(MA^2+MB^2+MC^2\ge MD^2\)
Trong mặt phẳng cho trước hai điểm A, B và k là một số thực dương khác 1 cho trước. Tìm tập hợp tất cả các điểm M (của mặt phẳng) sao cho \(\frac{MA}{MB}=k\)
Cho tứ diện ABCD. Gọi E, F,G lần lượt là trung điểm các cạnh DA, DB, DC và H, I, K tương ứng là trung điểm BC, CA, AB. Biết rằng EH=FI=GK. Chứng minh rằng :
\(\frac{DA}{\cos\widehat{BDC}}=\frac{DB}{\cos\widehat{CDA}}=\frac{DC}{\cos\widehat{ADB}}\)
Cho tứ diện ABCD . Gọi E, F lần lượt là trung điểm của AB và CD, I là trung điểm của EF:
a/ Chứng minh : \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
b/ Chứng minh : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{4MI}\) , với M tùy ý
1.` Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Tìm điểm M xác định bởi đẳng thức vectơ .\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\).
2.
Gọi ,MN lần lượt là trung điểm của các cạnh ACvà BDcủa tứdiện .ABCD Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \(\overrightarrow{IA}+2k-1\overrightarrow{IB}+k\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
1, Cho lăng trụ \(\Delta ABC,A'B'C'\) .Gọi M,N lần lượt trung điểm của AA',CC',G trọng tâm \(\Delta A'B'C'\) .Chứng minh (MGC')//(AB'N)
2, Tứ diện ABCD .M,N lần lượt trung điểm AB,CD,\(P\in AD,\overrightarrow{PA}=\overrightarrow{kPD},Q\in BC,\overrightarrow{QB}=\overrightarrow{kQC}\left(k\ne1\right)\) .Chứng minh M,N,P,Q đồng phẳng
Một đường thẳng \(\left(\Delta\right)\) không qua trọng tâm G của tam giác ABC cắt các đường thẳng GA, GB, GC tại A', B', C' theo thứ tự đó. Chứng minh rằng trong ba đại lượng \(\frac{GA}{GA'};\frac{GB}{GB'};\frac{GC}{GC'}\) có một đại lượng bằng tổng hai đại lượng còn lại
Cho lập phương ABCD.A'B'C'D' có độ dài các cạch bằng 1. Xét M trên cạnh AD và N trên canh BB' sao cho \(\frac{AM}{MD}=\frac{B'N'}{NB}\)
Chứng minh răng \(MN\perp A'C\)