Tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có AB = a, AC = b. Tam giác ADC vuông tại D có CD = a
a) Chứng minh các tam giác BAD và BDC là những tam giác vuông
b) Gọi I và K lần lượt là trung điểm của AD và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC
Cho tứ diện ABCD có AB=CD=8,AC=6, AD vuông góc BC. Tính giá trị lớn nhất AC+2BD
Câu 5: Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông tâm O cạnh bằng a, góc giữa cạnh bên và mặt đáy 1 góc 60°. Gọi IE lần lượt là là trung điểm của cạnh BC,CD a)Chứng minh: AC vuông góc (SBD) ; BD vuông góc SA b)Chứng minh: (SBC) vuông góc (SOI) c)Tính góc giữa mặt bên và mặt đáy. d)góc giữa OE và mặt (SCD) e)Tính khoảng cách giữa SI và AB.
Cho tứ diện ABCD có \(AB\perp CD\) và AB = CD = AC = a. Trên đoạn AC lấy M với AM = x. Qua M ta vẽ mặt phẳng (P) song song với AB và CD. Mặt phẳng (P) cắt BC, BD, AD lần lượt tại N, R, T
a) Cho biết tính chất của tứ gác MNRT
b) Tìm diện tích S của tứ giác MNRT theo a và x. Tìm x để S lớn nhất
c) Tìm x để \(S=\dfrac{2a^2}{9}\)
Cho tứ diện ABCD với AB = a, CD = b, AC = c. Lấy M là điểm bất kì trên đoạn AC. Qua M ta vẽ một mặt phẳng (P) song song với hai cạnh AB và CD. Gọi M, N, R, S lần lượt là giao điểm của (P) với các cạnh AC, BC, BD, AD
a) Tìm điều kiện để MNRS là hình chữ nhật
b) Đặt AM = x, (0 < x < c). Tìm diện tích S của tứ giác MNRS khi \(AB\perp CD\). Tìm giá trị lớn nhất của S ?
Cho tứ diện ABCD có CD = 4/3 AB. Gọi I,J,K lần lược là trung điểm của BC, AC và BD. Cho biết JK = 5/6 AD. Tính góc giữ đường thẳng CD với các đường thẳng IJ và AB.
Giúp em với.!
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, đáy lớn BC=2a, AB=AD=a, SB vuông góc (ABCD), SB= a√3 a. CM ∆SAD vuông b. CM DC vuông góc (SBD) c. Gọi O là giao điểm của AC và BD, (alpha) là mp qua O và vuông góc với AB. Tìm và tính thiết diện của hình chóp cắt bởi (alpha)
Giúp mình với mn ơi huhu
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a√2; SA vuông góc (ABCD) và SA=2a . Gọi E là hình chiếu vuông góc của A trên cạnh SB .
4.1. Chứng minh BD ⊥ (SAC) .
4.2. Chứng minh BC ⊥ (SAB) và (AEC) ⊥ (SBC) .
4.3. Gọi G và K lần lượt là trọng tâm của các tam giác SAD và ACD Tính góc giữa đường thẳng GK và mặt phẳng (SAB) .
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc vs mặt đáy, SA=a căn 3. Gọi O là giao điểm của BD và AC 1. CMR: CD vuông góc ( SAD) 2. CMR: SO vuông góc BD 3.xác định và tính góc giữa SO và mp( ABCD)