Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=> \(\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)
=> \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b=d\right)^2}\left(đpcm\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=> \(\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)
=> \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b=d\right)^2}\left(đpcm\right)\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng tỏ ta có tỉ lệ thức \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng tỏ tỉ lệ thức \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
1. Lập tất cả các tỉ lệ thức có được từ các số sau: 2,4; 4,0; 2,1; 5,6.
2. Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng tỏ ta có tỉ lệ thức \(\frac{ac}{bd}=\frac{\left(a+c^2\right)}{\left(b+d^2\right)}\)
3.
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng tỏ ta có tỉ lệ thức \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Help me
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a\ne b,c\ne d\right)ta\) có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
cho tỉ lệ thức a/b=c/d. Chứng minh rằng
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
1) Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a}{b}=\frac{a-c}{b-d}\left(b,d\ne0\right)\)
2) Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(a-b\ne0;c-d\ne0\right)\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng
a)\(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
b)\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)