Cho tam giác ABC nhọn có AH là đường cao kẻ HM vuông góc với AB tại M, HN vuông góc với AC tại N. Chứng minh AB.AM=AC.AN.
Cho tam giác ABC vuông tại B, đường cao BH. Biết AB=12cm, AC=20cm.
a) Tính AH,HC,BH,BC
b) Gọi M,N là hình chiếu của H trên AB,BC. CM: BM.BA=BN.BC
c) MN cắt AC tại D. CM: DM.DN=DA.DC
cho tam giác ABC vuông tại A, đường cao AH . Cho biết BH =4, CH=9cm. Gọi D,E lần lượt là hình chiếu vuông góc của H trên cạnh AB, AC. Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M,N. Tính diện tích tứ giác DENM
MÌNH ĐANG CẦN GẤP MN GIÚP MIK VS Ạ ! MIK CẢM ƠN !
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là hình chiếu của H lên AC, AB. CMR:
a,`AH^3 = BC.AM.AN`
b,`AH^2 = AN.NB+AM.MC`
cho tam giác ABC vuông tại A đường cao AH,cho M và N lần lượt là hình chiếu của H lên AB và Ac. Chứng minh: AB^2 + HC^2= AC^2 +HB^2
Cho hình vuông ABCD lấy điểm M ∈ BC vẽ AN ⊥ AM; N ∈ CD; tia AM cắt đường thẳng CD tại E.
a) ΔANM là tam giác gì?
b) Cmr: khi điểm M di động trên cạnh BC thì \(\dfrac{1}{AM^2}+\dfrac{1}{AE^2}\)không đổi
cho tam giác MNP vuông tại a đường cao MI TỪ I kẻ IE vuông góc với MN , IF vuông góc với MP . O là trung điểm của NP . có tam giác MEF đồng dạng với tam giác MPN .CMR MO vuông góc với EF
cho tam giác MNP vuông tại a đường cao MI TỪ I kẻ IE vuông góc với MN , IF vuông góc với MP . O là trung điểm của NP . Có tam giác MEF đồng dạng với tam giác MPN .CMR MO vuông góc với EF
cho tam giác MNP vuông tại a đường cao MI TỪ I kẻ IE vuông góc với MN , IF vuông góc với MP . O là trung điểm của NP . có tam giác MEF đồng dạng với tam giác MPN .CMR MO vuông góc với EF