Cho tam giác vuông NMP, trên tia Np lấy điểm K sao cho MN=NK, kẻ tia phân giác của góc N cắt MP tại y.
Chứng minh: a) ym = yk
b) Tam giác IKM vuông tại k
"Cứu"
Cho tam giác MNP vuông tai M có góc N=60 độ
a, Tính góc P
b, Trên cạnh NP, lấy điểm E sao cho NE=NM. Tia phân giác góc N cắt MP ở F. C/m tam giác NFM=tam giác NFE
c, Qua P, vẽ đường thẳng vuông góc với NF tại H. PH cắt đường thẳng MN tại Q. C/m tam giác NHQ= tam giác NHP
d, C/m tam giác NMP= tam giác NEQ và 3 điểm E, F, Q thẳng hàng
Cho tam giác MNP có MN = MP. Tia phân giác của góc M cắt NP ở I. Chứng minh:
a) NI = IP
b) MI vuông góc NP
Bài 2 cho tia Ot là tia phân giác của góc xOy nhọn trên tia Õ lấy điểm A trên tia Oy lấy điểm B sao cho OA=OB treentia Ot lấy điểm H sao cho OH>OA
a)chứng minh tam giác OAH=tam giác OBH
b)tia AH cát Oy tại M tia BH cắt tia Õ tại N .chứng minh rằng tam giác OAM=Tam giác OBM
c)chứng minh AB vuông góc OH
d)Gọi K là trung điểm của MN chứng minh K thuộc tia Ot
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của gpc1 ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm của DH. Chứng minh rằng: A, M, K thẳng hàng
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
Cho tam giác ABC vuông góc tại A. Tia phân giác của góc B cắt cạnh Ac tại D.
a)Cho biết góc ACB= 40 độ. Tính số đo góc ABD
b)Trên cạnh BC lấy điểm E sao cho BE=BA
CM: Tam giác BAD = tam giác BEC và BC vuông góc với DE
c) Gọi F là giao điểm của Ba và ED
CMR: tam giác ABC=tam giác EBF
d)Vẽ CK vuông với BD tại K. CM 3 điểm K; F;C thẳng hàng
cho tam giac vuong MNP. Tren canh NP lay diem K sao cho NM=NK. Ke tia P/G cua goc N cat MP tai I. CM:
a) IM=IK
b) tam giac IKM vuong tai A
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.