a: BC=25cm
sin B=AC/BC=4/5
cos B=3/5
tan B=4/3
cot B=3/4
b: sin B=4/5
nên góc B=53 độ
c: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{225}{25}=9\left(cm\right)\)
a: BC=25cm
sin B=AC/BC=4/5
cos B=3/5
tan B=4/3
cot B=3/4
b: sin B=4/5
nên góc B=53 độ
c: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{225}{25}=9\left(cm\right)\)
Cho tam giác ABC vuông tại A có góc B = 60 độ, BC = 6cm.
a) Tính AB, AC (độ dài làm tròn đến 1 chữ số thập phân).
b) Kẻ đường cao AH của tam giác ABC. Tính HB, HC.
c) Trên tia đối của tia BA lây điểm D sao cho DB = BC. Chứng minh: \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
d) Từ A kẻ đường thẳng song song với phân giác của CBD cắt CD tại K. Chứng minh : \(\dfrac{1}{KD.KC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)
Cho tam giác ABC vuông tại A đường cao AH AB = 12 cm và BC = 20 cm a tính độ dài AC và đường cao AH b tính tan C và số đo góc C làm tròn đến độ
Cho tam giác ABC vuông tại A đường cao AH. Biết AH = 6, BH = 4,5. a) Tính HC, AC. b) Tính các tỉ số lượng giác của góc C. c) Cho E, F là hình chiếu của H trên AB, AC.
chứng minh AB mũ 3 / AC mũ 3 =BE/CF
Cho tam giác ABC vuông tại A đường cao AH. Biết AH = 6, BH = 4,5. a) Tính HC, AC. b) Tính các tỉ số lượng giác của góc C. c) Cho E, F là hình chiếu của H trên AB, AC.
chứng minh AB mũ 3 / AC mũ 3 =BE/CF
Cho tam giác ABC vuông tại A , đường cao AH . Biết BH = 2cm , CH = 8cm . Tính các cạnh của tam giác ABC , tỉ số lượng giác của góc B
Cho tam giác ABC vuông tại A đường cao AH, AB=6, BC=10 a) Tính BH, HC, AH, góc BAH. b) Vẽ BD là tia phân giác của tam giác ABH ( D thuộc AC ). Kẻ AK vuông góc với BD tại K. Cmr: BH.BC=BK.BD. c) BD cắt AH tại S. Tính diện tích tứ giác SHCD?
Cho tam giác ABC vuông tại A , đường cao AH = 14cm . BH : HC = 1 : 4 . Tính tỉ số lượng giác của góc B
cho tam giác ABC vuông tại A, đường cao AH, biết AH=4,8cm, BH=3,6cm. a) Tính CH, AB, AC b) Gọi AD là tia phân giác của góc A. Tính BD, CD, HD, AD
Cho tam giác ABC vuông tại A , đường cao AH ; biết AB= 9cm ; AC = 12cm . a) Tính BC , AH . b) Tính số đo góc B ( làm tròn đến phút ) c) Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt AC tại D . Chứng minh 2AC.DC = BC2