Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phuong Hoang

cho tam giác nhọn ABC có AB>AC, vẽ đường cao AH.

a) chứng minh HB>HC

b) so sánh BAH và góc CAH

c) vẽ M, N sao cho AB, AC lần lượt là trung trực của các đoạn thẳng HM, HN. chứng minh tam giác MAN là tam giác cân

Hắc Hường
24 tháng 6 2018 lúc 16:59

Hình:

A B C N M H I K

Giải:

a) Ta có:

\(AB>AC\left(gt\right)\)

\(\Leftrightarrow HB>HC\) (Quan hệ giữa hình chiếu và đường xiên)

b) Ta có: \(AB>AC\left(gt\right)\)

\(\Leftrightarrow\widehat{ABC}< \widehat{ACB}\) (Quan hệ cạnh và góc đối diện)

Lại có:

\(\widehat{BAH}+\widehat{ABC}+\widehat{AHB}=180^0\) (Tổng ba góc tam giác)

\(\Leftrightarrow\widehat{BAH}+\widehat{ABC}+90^0=180^0\)

\(\Leftrightarrow\widehat{BAH}=180^0-\widehat{ABC}-90^0\)

\(\Leftrightarrow\widehat{BAH}=900^0-\widehat{ABC}\)

Tương tự ta được:

\(\Leftrightarrow\widehat{CAH}=900^0-\widehat{ACB}\)

Ta có:

\(\widehat{ABC}< \widehat{ACB}\) (Chứng minh trên)

\(\Leftrightarrow-\widehat{ABC}>-\widehat{ACB}\)

\(\Leftrightarrow90^0-\widehat{ABC}>90^0-\widehat{ACB}\)

\(\Leftrightarrow\widehat{BAH}>\widehat{CAH}\)

c) Gọi I và K lần lượt là giao điểm của HN với AC và HM với AB

Xét tam giác AIN và tam giác AIH, có:

\(\widehat{AIN}=\widehat{AIH}=90^0\) (HN là đường trung trực của AC)

AI chung

\(IN=IH\) (HN là đường trung trực của AC)

\(\Rightarrow\Delta AIN=\Delta AIH\left(c.g.c\right)\)

\(\Rightarrow AN=AH\) (Hai cạnh tương ứng) (1)

Chứng minh tương tự với tam giác AKM và tam giác AKH, ta được:

\(\Delta AKM=\Delta AKH\left(c.g.c\right)\)

\(\Rightarrow AM=AH\) (Hai cạnh tương ứng) (2)

Từ (1) và (2) \(\Rightarrow AM=AN\) (Bắc cầu)

Suy ra tam giác MAN cân tại A

Vậy ...


Các câu hỏi tương tự
Dương Trần Thiên Chi
Xem chi tiết
Phuong Hoang
Xem chi tiết
doan anh nguyen
Xem chi tiết
Mỹ Trang Nguyễn
Xem chi tiết
Sơn Khuê
Xem chi tiết
Jimin
Xem chi tiết
 Hùng
Xem chi tiết
Hòa Đình
Xem chi tiết
Qanhh pro
Xem chi tiết