\(\Delta ADB\sim\Delta CDH\left(g-g\right)\Rightarrow AD.DH=DC.DB\)
\(\Leftrightarrow AD=DH.\frac{AD^2}{DC.DB}\)
\(\Leftrightarrow AD=DH.TanB.TanC\RightarrowĐPCM\)
\(\Delta ADB\sim\Delta CDH\left(g-g\right)\Rightarrow AD.DH=DC.DB\)
\(\Leftrightarrow AD=DH.\frac{AD^2}{DC.DB}\)
\(\Leftrightarrow AD=DH.TanB.TanC\RightarrowĐPCM\)
Cho tam giác ABC nhọn nội tiếp (O) đường cao AD, BE cắt nhau tại H, AD cắt đường tròn tại A, ( A ≠ A, )
a) chứng minh H đối xứng A, qua BC
b) gọi K là điểm đối xứng của A qua O. Chứng minh BHCK là hình bình hành
c) Gọi G là trọng tâm tam giác ABC. chứng minh 3 điểm H,G,O thẳng hàng
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
cho đường tròn (O;R) và dây cung BC cố định (BC<2R) . Gọi A là điểm di động trên cung lớn BC sao cho ABC là tam giác có 3 góc nhọn. Các đường cao AD,BE,CF của tam giác cắt nhau tại H . a) CM:tứ giác AEHF nội tiếp đường tròn; xác định tâm I của đường tròn đó.b)CMR:khi điểm A di động thì tiếp tuyến tại E của đường tròn tâm (I) luôn đi qua 1 điểm cố định.c)Xác định vị trí của điểm A để tam giác AEF có diện tích lớn nhất ?
Cho tam giác ABC nhọn nội tiếp (O), 2 đg cao BE,CF cắt nhau tại H. Kẻ đk AD của (O).Qua H kẻ đg d vuông góc AO tại K, d cắt AB,AC,BC tại M,N,S.
a)C/m A,E,F,K,H cùng e 1 đg tròn
b)C/m BCMN nội tiếp và SM.SN= SB.SC.
c) AH cắt (O) tại Q. C/m SQ^2 = SM.SN
d)C/m SI vuông góc OI.
Cho tam giác ABC nhọn các đường cao AD và BE cắt nhau tại H. Chứng minh tanB*tanC=\(\frac{AD}{HD}\)
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O bán kính R. AD, BE là các đường cao của tam giác ABC. Các tia AD, BE lần lượt cắt (O) tại các điểm thứ hai là M và N. Chứng minh:
a) MN song song với DE
b) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh độ dài đường kính đường tròn ngoại tiếp tam giác CDE không đổi
Cho tam giác ABC nhọn với các đường cao AD, BE, CF cắt nhau tại H. Gọi G là trọng tâm tam giác ABC. CMR: DA.DH≤\(\frac{BC^2}{4}\)
Cho tam giác ABC (AB<AC) nhọn nội tiếp đường tròn tâm O. Đường cao AD, BE, CF cắt nhau tại H. Gọi K là giao điểm của BE và CF.Đường thẳng đi qua F song song với AC cắt AK , AD lần lượt tại M,N. Chứng minh MF=NF
cho tam giác abc nhọn , vẽ đường cao AD , BE , CF cắt nhau tại H . Gọi K là giao điểm của AD với EF và G là giao điểm của BE và DF chứng minh DEF là 1 tam giác vuông khi DK.EG = 2DH.EH