a) Xét ΔMNP có MD là đường phân giác ứng với cạnh NP(gt)
nên \(\frac{ND}{NM}=\frac{DP}{PM}\)
\(\Leftrightarrow\frac{ND}{8}=\frac{7.5}{10}\)
hay \(ND=\frac{7.5\cdot8}{10}=\frac{60}{10}=6cm\)
Vậy: ND=6cm
b) Xét ΔMNP có DC//MP(gt)
nên \(\frac{NC}{CM}=\frac{ND}{DP}\)
\(\Leftrightarrow\frac{NC}{CM}=\frac{6}{7.5}\)
hay \(\frac{NC}{6}=\frac{CM}{7.5}\)
Ta có: NC+CM=MN=8cm(C nằm giữa N và M)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{NC}{6}=\frac{CM}{7.5}=\frac{NC+CM}{6+7.5}=\frac{NM}{13.5}=\frac{8}{13.5}=\frac{16}{27}\)
Do đó: \(\frac{NC}{6}=\frac{16}{27}\)
\(\Leftrightarrow NC=\frac{16\cdot6}{27}=\frac{96}{27}=\frac{32}{9}\simeq3.55cm\)
Vậy: NC\(\simeq\)3,55cm