thay vua ra phat lap tuc len day hoi luon a
thay vua ra phat lap tuc len day hoi luon a
cho tam giác abc vuông tại a ( ab < ac ) lấy điểm i nằm trên ab kẻ bd vuông góc ci tại d. a) chứng minh tam giác aic đồng dạng tam giác dib. b) chứng minh góc abc = góc adc. c) giả sử ic là phân giác của tam giác abc. chứng minh da = db
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là điểm đối xứng của H qua các cạnh AB, AC.
a) chứng minh BD//CE.
b. Chứng minh tam giác ABD đồng dạng với tam giác ACE.
Cho tam giác ABC, AB = 4,8 cm; BC = 3,6 cm; AC = 6,4 cm. Trên cạnh AB lấy điểm E sao cho AE = 2,4 cm, trên cạnh AC lấy điểm D sao cho AD = 3,2 cm. Gọi giao điểm của ED và CB là F.
a, C/m tam giác ABC đồng dạng với tam giác AFD
c, tính FD
?
Cho tam giác MNQ có 3 góc nhọn. Vẽ các đường cao NE, QF
a) Chứng minh tam giác MNE đồng dạng tam giác MQF
b) Chứng minh tam giác MEF đồng dạng tam giác MNQ
c) Gọi I, K lần lượt là trung điểm của NQ, EF. Chứng minh: tam giác EIF cân; IK ⊥ EF tại K.
c) Cho NQ = 12cm, diện tích tam giác MEF = 1/9 diện tích tam giác MNQ. Tính diện tích IEF = ?
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU
CHo tam giác ABC phân giác AD . TRên nửa mặt phẳng bờ BC không chứa Điểm A vẽ tia Bx sao cho góc BCx = góc BAD . GỌi I là giao điểm của tia Cx với AD kéo dài .
a) Hai tam giác ADC và BDI có đồng dạng không . VÌ sao ?
b) Chứng minh AB.AC=AD.AI
c) CHứng minh AB.AC-DB.DC=AD2
Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng
cho hình vuông ABCD , lấy điểm M trên cạnh BC, điểm N trên cạnh DC biết góc MAN = 45 độ . AM, AN cắt BD tại Q và P.
a) Chứng minh tam giác ABQ đồng dạng với tam giác PQM.
b) Kẻ AH vuông góc với MN . Chứng minh rằng AH có giá trị không đổi .
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90