Cho tam giác ABC vuông tại A ( có AB <AC ), đường cao AH . Trên tia AC lấy điểm D sao cho AD =AB . Trên tia HC lấy điểm E sao cho HE =AH a. Chứng minh: Bốn điểm A D E B thuộc cùng một đường tròn
Cho tam giác ABC đều nội tiếp (O) điểm D di chuyể trên AC . Gọi E là giao điểm AC, BD. F là giao điểm AD, BC . Chứng minh
a, góc AFB = ABD
b, Tích AE. BF khong đổi
cho tam giác ABC vuông tại A. Phân giác BF .từ I nằm giữa B và F, vẽ đường thẳng song song AC cắt AB,BC lần lượt tại M và N .vẽ đường tròn ngoài tiếp tam giác BIN cắt đường thẳng AI tại D.các đường thẳngDN và BF cắt nhau tại E.
a)chứng minh 4 điểm A,B,D,E cùng thuộc một đường tròn
b)chứng minh 5 điểm A,B,C,D,E cùng thuộc một đường tròn và BE vuông góc CE
cho tam giác ABC vuông tại A. Phân giác BF .từ I nằm giữa B và F.Vẽ đường thẳng song song AC cắt AB Ac lần lượt tại M và N .vẽ đường tròn ngoài tiếp tam giác BIN cắt đường thẳng AI tại D.các đường thẳngDN và BF cắt nhau tại E.
a)cứng minh 4 điểm A B D E cùng thuộc một đường tròn
b)chứng minh 5 điểm A, B,C,D,E cùng thuộc một đường tròn và BE vuông góc CE
Bài 1: Cho nửa đường tròn tâm o đường kính AB. M,N di động trên nửa đường tròn sao cho M nằm trên cung AN và MN=R . Gọi I là giai điểm của AM và BN, K là giao điểm của AN và BM. Chứng minh
a) Điểm I thuộc 1 đường cố định
b) Điểm K thuộc 1 đường cố định
Bài 2:Cho tam giác ABC nội tiếp đường tròn tâm o. Tiếp tuyến của đường tròn ở B và C cắt nhau ở D. Qua D kẻ một cát tuyến cắt đường tròn ở E và F, cắt cạnh AC ở I. Cho biết EF // AB, chứng minh 4 điểm O,I,C,D cùng thuộc 1 đường tròn
Cho I, O lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác ABC với \(\widehat{A}=60^o.\) Gọi H là giao điểm của các đường cao BB' và CC'. Chứng minh các điểm B, C, O, H, I cùng thuộc một đường tròn.
1. Cho tam giác ABC, đường thẳng d cắt hai cạnh AB, AC và trung tuyến AM theo thứ tự tại E, F và N
a. CMR: \(\frac{AB}{AE}+\frac{AC}{AF}=\frac{2AM}{AN}\)
b. Giả sử đường thẳng d song song với BC, trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh PQ // BC
2. Cho hình thoi ABCD có \(\widehat{BAD}=40^o\), O là giao điểm của hai đường chéo. Gọi H là hình chiếu vuông góc của O trên cạnh AB. Trên tia đối của tia BC, tia đối của tia DC lần lượt lấy các điểm M, N sao cho HM // AN. Tính số đo góc MON
1. Cho hình bình hành ABCD ( góc A<90), Đường tròn tâm A, bán kính AB cắt đường thẳng CB tại điểm thứ hai là E. Đường tròn tâm C, bán kính CB cắt đường thẳng AB tại điểm thứ hai là điểm F. Chứng minh rằng: 4 điểm E, F, D, C cùng thuộc một đường tròn.
2. Cho tam giác ABC đều nội tiếp đường tròn(O), D là điểm di động trên cung BC . Trên AD lấy điểm M sao cho DB=DM. Chứng minh điểm M thuộc một đường cố định.
Cho nửa đường tròn đường kính AB cố định. C là một điểm trên nửa đường tròn, trên dây AC kéo dài lấy điểm D sao cho CD = CB
a) Tìm quỹ tích các điểm D khi C chạy trên nửa đường tròn đã cho
b) Trên tia CA lấy điểm E sao cho CE = CB. Tìm quỹ tích các điểm E khi C chạy trên nửa đường tròn đã cho