Bài 6: Ôn tập chương Vecơ trong không gian. Quan hệ vuông góc trong không gian.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác đều ABC có cạnh bằng a. Đường thẳng d vuông góc với mp (ABC) tại A và \(M\in\left(d\right)\). Gọi H, O lần lượt là trực tâm của tam giác ABC và tam giác MBC. Gọi N là giao điểm của HO và d. Chứng minh tứ diện BCMN có các cặp cạnh đối vuông góc với nhau từng đôi một ?

 

Nguyen Thuy Hoa
25 tháng 5 2017 lúc 15:07

Do \(d\perp\left(ABC\right)\) nên \(MN\perp BC\)

\(\left\{{}\begin{matrix}MC\perp\left(BOH\right)\\BN\subset\left(BOH\right)\end{matrix}\right.\) \(\Rightarrow MC\perp BN\)

\(\left\{{}\begin{matrix}MB\perp\left(CHO\right)\\CN\subset\left(CHO\right)\end{matrix}\right.\)\(\Rightarrow MB\perp CN\)

Nguyen Thuy Hoa
25 tháng 5 2017 lúc 15:10

Vectơ trong không gian, Quan hệ vuông góc


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Ngô Hoàng Mỹ Thy
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết