Gọi I, J, K lần lượt là các giao điểm của AH và MO; AC và BH; MC và BO
\(MA\perp\left(ABC\right)\Rightarrow MA\perp BJ\)
H là trực tâm của tam giác ABC => \(AC\perp BJ\)
\(\left\{{}\begin{matrix}BJ\perp MA\\BJ\perp AC\end{matrix}\right.\)\(\Rightarrow BJ\perp\left(MAC\right)\)
\(\Rightarrow BJ\perp MC\)
O là trực tâm của tam giác MBC nên \(BO\perp MC\)
Do đó : \(BO\perp\left(BJK\right)\Rightarrow MC\perp\left(BOH\right)\Rightarrow MC\perp OH\) (1)
Chứng minh tương tự : \(MB\perp OH\) (2)
Từ (1) và (2) cho \(OH\perp\left(MBC\right)\)