bài 1 : Cho tam giác ABC vuông tại A , đường cao AH . kẻ HD vuông góc AB ( B thuộc AB) HE vuông góc AC ( E thuộc AC )
a , chứng minh AH^2 trên AC^2 = HB trên HC
b, AH^3= BD.CE.BC
Bài 2 . cho hình vuông ABCD cạnh a . gọi M là điểm nằm giữa A và B , Tia DM và CB cắt nhau tại K . Qua D kẻ đường thằng vuông góc với DM và cắt BC tại N
a, CM : tam giác DMN cân
b, CM : \(1/ DM^2 + 1/ DK^2\) không phụ thuộc vào vị trí điểm M trên AB
Bài 3 ; cho tam giác ABC vuông tại A , đường cao AH. từ B kẻ đường thẳng vuông góc với AB và cắt tia AH tại D
a, CM ; \(AB^2 / AD^2= HC /BC\)
b, CM ;\(1/ AB^2 + 1/ BD^2 = 1/ HD. HA\)
c, cho AB = 30cm , AH= 24cm. tính BH, BC ,BD
Bài 4 HÌnh vuông ABCD , điểm M bất kì trên cạnh BC, AM cắt đường thẳng CD tại E . Trên tia đối của tia DC lấy điểm N sao cho DN= BM
a, CM; AM vuông góc AN
b, CM; \( 1/ Am^2+1/AE^2=1/BC^2\)
Cho tam giác ABC vuông tại A, đường cao AH
a) Tính góc B, biết AH = 3, AB=2
b) AD là phân giác góc HAC, Từ D kẻ DK vuông góc BC cắt AC tại K. Chứng minh rằng BK là phân giác của góc ABC
c) Từ D kẻ DM vuông góc AC, CM/CK =(cosC)²
d) BK //HM
Cho tam giác ABC vuông tại A có đường cao là ah HP = 9 cm HC = 16 cm
a)tính AB AC ah
b)Gọi D và E lần lượt là hình chiếu vuông góc của h trên AB và AC. tứ giác AD he là hình gì
Cho tam giác ABC vuông tại A (AB<AC)đường cao AH (H thuộc BC)
a)Cho AB = 9cm, AC = 12cm. Tính AH,BH,tạc
b)Từ H kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Chứng minh HD.AB+HE.AC=AB.AC
c)Gọi M là trung điểm BC, AM cắt DE tại I. Chứng minh 1/AI²=1/AD²+1/AE²
Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC (H thuộc BC).
1) Nếu sin ACB = 3/5 và BC = 20 cm. Tính các cạnh AB, AC, BH và góc ACB (số đo góc làm tròn đến độ)
2) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. Chứng minh: AD.AC = BH.BC.
3) Kẻ tia phân giác BE của DBA ( E thuộc đoạn DA). Chứng minh: tan EBA = AD/AB + BD
4) Lấy điểm K thuộc đoạn AC, Kẻ KM vuông góc với HC tại M, KN vuông góc với AH tại N. chứng minh : NH.NA+MH.MC=KA.KC
Cho ΔABC vuông ở A, phân giác AD, đường cao AH biết BD = 15cm, CD = 20cm. Tính:
a, \(\frac{AC^2}{AB^2}\)
b, BH, HC
1.Cho tam giác ABC vuông tại A, phân giác AD,đường cao AH. Biết BD=7,5 cm, DC=10cm. Tính AH,BH,HD
2. Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác góc HAC cắt HC ở D. K là hình chiếu của d trên HC. Biết BC=25 cm, DK= 26cm. Tính AB.
3. Cho tam giác ABC, BC=40 cm, đường phân giác AD== 45 cm.Đường cao AH=36 cm. Tính BD và DC
Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 15 cm, HC = 9 cm. Tính chu vi tam giác ABH và góc B là tròn đến độ.
4) cho tam giác ABC có AB = 6cm , AC = 4,5 cm , BC = 7,5 cm . a) C.minh tam giác ABC là hình vuông . b) tính góc B và góc C và đường cao AH . c) lây M bất kì trên cạnh BC . Gọi hình chiếu của M trên AB , AC . Lần lượt là P và Q . C.minh PQ , AM , hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất