Cho tam giác ABC vuông tại A (AB<AC)đường cao AH (H thuộc BC)
a)Cho AB = 9cm, AC = 12cm. Tính AH,BH,tạc
b)Từ H kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Chứng minh HD.AB+HE.AC=AB.AC
c)Gọi M là trung điểm BC, AM cắt DE tại I. Chứng minh 1/AI²=1/AD²+1/AE²
Cho tam giác ABC vuông tại A, AB = 6 cm, AC = 8 cm.
a) Tính BC, góc B, góc C
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB, AC. Tứ giác AEDF là hình gì? Tính chu vi và diện tích của tứ giác AEDF.
Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC (H thuộc BC).
1) Nếu sin ACB = 3/5 và BC = 20 cm. Tính các cạnh AB, AC, BH và góc ACB (số đo góc làm tròn đến độ)
2) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. Chứng minh: AD.AC = BH.BC.
3) Kẻ tia phân giác BE của DBA ( E thuộc đoạn DA). Chứng minh: tan EBA = AD/AB + BD
4) Lấy điểm K thuộc đoạn AC, Kẻ KM vuông góc với HC tại M, KN vuông góc với AH tại N. chứng minh : NH.NA+MH.MC=KA.KC
Cho tam giác ABC vuông tại A , AH vuông với BC, AD là đường phân giác.Gọi HM,HN là đường phân giác của tam giác HAB,HAC
a,Chứng minh DM//AC và AD=MN
b,Gọi AP,AQ là đường phân giác của tam giác AHB,AHC. cmr:
PQ2=2PB.CQ
Cho tam giác ABC vuông tại A,kẻ đường cao AH AB=3cm,AC=4cm a)tính BC,AC b)tính góc BAH c)Chứng MINH BH=CH.tan2B
Cho tam giác ABC vuông tại A có đường cao là ah HP = 9 cm HC = 16 cm
a)tính AB AC ah
b)Gọi D và E lần lượt là hình chiếu vuông góc của h trên AB và AC. tứ giác AD he là hình gì
cho tam giác ABC vuông tại A biết AB = 5cm AC = 12cm BC = 13cm. Kẻ đường cao AH. Tính các cạnh và góc còn lại của tam giác AHB
Cho Tam giác ABC vuông tại A, đường cao AH,gọi E và F theo thứ tự là hình chiếu vuông góc của H lên AB, AC. a, chứng minh AE.AB=AF.AC B,tam giác AFE đồng dạng tam giác ABC C, chứng minh AH^3= AE.AF.BC D, BC cố định, tìm vị trí của A để EF có độ dài lớn nhất
Cho tam giác ABC vuông tại A, trung tuyến BM. Gọi D là chân đường vuông góc kẻ từ C đến BM và H là chân đường vuông góc kẻ từ D đến AC.
\Delta\text{ABM}ΔABM không đồng dạng với những tam giác nào dưới đây?
\Delta\text{HDM}ΔHDM
\Delta\text{HCD}ΔHCD
\Delta\text{DCM}ΔDCM
\Delta\text{CBD}ΔCBD
\Delta\text{ABC}ΔABC