Cho tam giác ABC có E thuộc cạnh AB, D thuộc cạnh AC và M thuộc cạnh BC sao cho EM // AC; MD // AB. Gọi I là trung điểm của ED. Khi đó số đo của AIM là
Cho tam giác ABC có 3 góc nhọn đường cao AH. Trên cạnh AC lấy điểm M, trên cạnh AB lấy điểm N sao cho HA là tia phân giác của góc MHN. CM: 3 đường BM, CN,AH đồng quy
Cho tam giác ABC có AB=12cm , AC=15cm, BC=q6cm. Trên cạnh AB lấy điểm M sao cho AM=3cm. Từ M kẻ đường thẳng song song với BC cắt AC tại N, cắt trung tuyến AI tại K.
a/ Tính độ dài MN
b/ Chứng minh K là trung điểm của MN
c/ Trên tia MN lấy điểm P sao cho MP=8cm. Nối PI cắt AC tại Q. Chững minh tam giác QIC đồng dạng với tam giác AMN
cho ABCD là hình chữ nhật có AB=4cm ,BC=6cm.Trên cạnh BD lấy E và F sao cho BE=EF=ED .Khi đó diện tích tam giác CFE là ....
( cần giải gấp)
Cho tam giác ABC, M là 1 điểm nằm trên cạnh BC thỏa mãn: \(BM=\dfrac{1}{3}BC\); lấy I thuộc đoạn AM sao cho \(AI=\dfrac{1}{3}AM\). Tia BI cắt cạnh AC tại D. Tính tỉ số \(\dfrac{AD}{AC}\)
cho tam giác ABC vuông tại a có ah vuông góc với BC, trên cạnh AB, AC lấy 2 điểm E, D sao cho góc DHE=90 độ. Tìm vị trí của điểm D, E sao cho độ dài DE nhỏ nhất
cho góc xOy có số đo lớn hơn 60 độ nhưng nhỏ hơn 180 độ.Trên cạnh Ox lấy điểm A,trên cạnh Oy lấy điểm C.CMR:AC>OA+OC/2
Cho tứ giác lồi ABCD. Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho MA=kMB, ND=k.NC( k là 1 số thực dương). Gọi P, Q, R theo thứ tự là các trung điểm của các đoạn thẳng AD, BC,MN.
a) CHứng minh: 3 điểm P, Q, R thẳng hàng.
b) So sánh RP/RQ=MA/MB
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG
Cho tam giác ABC vuông tại A có AB = 12cm,BC = 20cm.Gọi M là trung điểm của cạnh BC và N là trung điểm của cạnh AC
a)Tính diện tích tam giác ABC
b)Vẽ D nằm trên tia đối của tia NM sao cho N là trung điểm của MD.
c)Kẻ BN cắt AM tại E.Chứng Minh EA=2EM