cho hình thang cân ABCD có AB//CD và AB<CD, đường chéo BD vuông góc với cạnh BC. vẽ đường cao AH
a) CM tam giác BDC đồng dạng với tam giác HBC
b) Cho BC=15cm, DC=25cm. tính HC,HD
c) tính S abcd
cho hình thang cân abcd có ab//dc và ab<dc, đường chéo bd vuông góc với cạch bên bc. vẽ đường cao bh,ak
a, cm tam giác bdc đồng dạng tam giác hbc
b, cm bc^2=hc.dc
c,cm tam giác akd đồng dạng tam giác bhc
d, cho bc=15cm. dc=25cm. tính hc,hd
e, tính diện tích hình thang abcd
cho tam giác BCD vuông tại B ,BC < BD . Vẽ đường cao BH
1. chứng minh rằng tam giác BCD đồng dạng với tam giác HCB . Từ đó suy ra CH .CD = \(^{CB^2}\)
2, cho BC = 15 ,BD = 20
a, tính độ dài các đoạn thẳng CD , CH
b, gọi A là điểm sao cho tứ giác ABCD là hình thang cân có hai đáy AB ,CD .Tính diện tích hình thang ABCD
Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
Chủ đề: Học toán lớp 7
Cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH, AK
a, chứng minh ΔBDC đồng dạng với ΔHBC
b, chứng minh BC2 = HC.DC
c, chứng minh ΔAKD đồng dạng với ΔBHC
d, cho BC=15cm, DC=25cm. tính HC, HD
e, tính diện tích hình thang ABCD
Cho hình chữ nhật ABCD, kẻ BH vuông góc với đường chéo AC (H thuộc AC).
a) Chứng minh tam giác ABH đồng dạng với tam giác ACB
b) Cho AB = 7cm, BC = 24cm. Tính độ dài BH
c) Gọi O là giao điểm của AC và BD, K là trung điểm của AB; BH cắt OK tại G, đường thẳng AG cắt OB tại L. Chứng minh LH // AB.
Cho hình thang ABCD (AB//CD). Gọi I là giao điểm của hai đường chéo AC và BD. Vẽ qua I một đường thẳng song song với AB cắt AD và BC lần lượt tại E và F. CMR:
a. IE=IF
b. \(\dfrac{2}{EF}\)=\(\dfrac{1}{AB}\)+\(\dfrac{1}{CD}\)