1. Cho tam giác ABC . Các điểm M,N thỏa mãn : \(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\)
a. Tìm điểm I sao cho \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{O}\)
b. Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định
c.gọi P là trung điểm của BN. Chứng minh đường thẳng MP luôn đi qua một điểm cố định
cho điểm M bất kì trong mặt phẳng gọi \(\overrightarrow{MN}\) được xác định \(\overrightarrow{MN}=\overrightarrow{MA}-2\overrightarrow{MB}\). chứng minh rằng MN luôn đi qua 1 điểm cố định
cho tam giác abc:
a, xác định I sao cho: \(3\overrightarrow{IA}-2\overrightarrow{IB}+\overrightarrow{IC}\)
b, chứng minh đường thẳng nối đến 2 điểm M,N xác định bởi hệ thức \(\overrightarrow{MN}=2\overrightarrow{MA}-2\overrightarrow{MB}+\overrightarrow{MC}\) luôn đi qua 1 điểm cố định
c, tìm tập hợp các điểm H sao cho : | \(3\overrightarrow{HA}-2\overrightarrow{HB}+\overrightarrow{HC}\) | = | \(\overrightarrow{HA}-\overrightarrow{HB}\) |
Cho tam giác ABC và hai điểm M,N nằm trên các cạnh AC,AB sao cho MN song song với BC. Điểm P di chuyển trên đoạn thẳng MN. Lấy các điểm E,F sao cho \(EP\perp AC,EC\perp BC,EP\perp AB,FB\perp BC\)
a) Chứng minh rằng đường thẳng EF đi qua một điểm cố định khi P di chuyển
b) Đường thẳng qua A vuông góc với EF cắt BC tại Q. CHứng minh BC đi qua trung điểm PQ
cho tam giác ABC,M thuộc cạnh AB sao choMB=2MA.N là điểm thỏa:VECTO NA+NC=VECTO KHÔNG,I LÀ TRUNG ĐIỂM MN.
A)CHỨNG MINH: VECTO BI=-5/6 VECTO AB+1/4 VECTO AC
B)GỌI H LÀ ĐIỂM THỎA: VECTO AH=3/10 VECTO AC.CHỨNG MINH BI QUA H
Cho 3 điểm A , B , C và 3 số thực a, b , c có a+b+c # 0
a. Tìm tập hợp điểm J sao cho \(a\overrightarrow{JA}+b\overrightarrow{JB}+c\overrightarrow{JC}=\overrightarrow{0}\)
b. C/m ∀M ta có \(a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}=\left(a+b+c\right)\overrightarrow{MJ}\)
c. M , N là 2 điểm thỏa mãn \(a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}=\overrightarrow{MN}\) . C/m M , N thay đổi thì đường thẳng MN đi qua I điểm cố định
Cho tam giác ABC có trung tuyến AD, M là trung điểm của AD, N xác định bởi vecto AC = 3.vecto AN. Chứng minh rằng ba điểm B, M, N thẳng hàng
cho ΔABC . gọi I,J,K là các điểm cố định bởi \(\overrightarrow{JA}+\overrightarrow{JC}=\overrightarrow{0}\), \(\overrightarrow{IB}=2\overrightarrow{AI},\overrightarrow{BK}=2\overrightarrow{BC}\)
Cho H là điểm luôn thay đổi ,L là điểm xác định bởi \(\overrightarrow{HL}=3\overrightarrow{HC}+4\overrightarrow{HB}\). chứng minh rẳng đường thẳng HL luôn đi qua 1 điểm cố định
Cho tâm giác ABC. Xác định điểm M để:
Vecto MA + 2. Vecto MB = vecto 0