Hình vẽ chỉ mang tính chất minh hoạ thôi nha bạn.
Trên tia đối của AB lấy điểm D sao cho \(BD\text{=}BC\)
Do đó :
Ta có : tam giác BDC cân tại B
\(AD\text{=}DB+AB\text{=}BC+AB\text{=}3AB\)
\(\Rightarrow\widehat{ABC}\text{=}\widehat{BDC}+\widehat{BCD}\text{=}2\widehat{BCD}\)
Mà : \(\widehat{B}\text{=}2\widehat{C}\) nên \(\widehat{B}\text{=}\widehat{DCA}\)
Xét \(\Delta BAC\) và \(\Delta CAD\) có :
\(\widehat{A}:gócchung\)
\(\widehat{B}\text{=}\widehat{ACD}\left(cmt\right)\)
\(\Rightarrow\Delta BAC\sim\Delta CAD\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{AC}\text{=}\dfrac{AC}{AD}\) \(\Rightarrow AC^2\text{=}AB.AD\)
Mà \(AD\text{=}3AB\) \(\Rightarrow AC^2\text{=}3AB^2\)
Ta có : \(BC^2\text{=}4AB^2\)
Xét tam giác ABC có : \(AB^2+AC^2\text{=}AB^2+3AB^2\text{=}4AB^2\text{=}BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
Kết hợp với gt của đề bài : \(\Rightarrow\widehat{A}\text{=}90^o;\widehat{C}\text{=}30^o;\widehat{B}\text{=}60^o\).