Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Thu Thảo

Cho tam giác ABC, \(\widehat{A}\)= 90 độ, \(\widehat{B}\)= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho BH=HD

a) Chứng minh tam giác ABD đều.

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh \(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)

Lê Thị Diệu Đan
30 tháng 5 2018 lúc 14:13

a) AH ⊥ BD (vì AH là đường cao Δ ABC )

HD=HB

⇒ AD = AB ( Quan hệ đương xiên- hình chiếu)

⇒ Δ ABD cân tại A

mà ∠ABD = 60\(^o\)

⇒ Δ ABD đều

b) Ta có : ∠ BAD +∠DAC =∠BAC

mà ∠ BAD =60\(^o\) ( Δ BAD đều ), ∠ BAC = 90\(^0\)

⇒60\(^0\) +∠ DAC = 90\(^0\)

⇒∠DAC = 90\(^0\) - 60\(^0\) =30\(^0\) (1)

Vì ED ⊥ BC ⇒ ∠EDB =90\(^0\)

Tương tự trên ∠BDA +∠ADE =∠EDB ⇒∠ADE =30\(^0\) (2)

Từ (1) và (2) ⇒ ∠DAC =∠ ADE =30\(^0\)

⇒ Δ AED cân tại E

c)Ta có:∠BDA+ ∠ADC= 180\(^0\) ,mà ∠BDA=60\(^0\)

⇒∠ADC=180\(^0\)- 60\(^0\)= 120\(^o\)

ΔADC có: ∠ADC+ ∠DAC +∠ DBA =180\(^o\)

⇒120\(^o\) +30\(^o\) + ∠ DBA= 180\(^o\)

⇒∠DBA=30\(^o\)

⇒∠DBA =∠ DAC =30\(^o\) ⇒ ΔADC cân tại D

Xét Δ AHD , Δ CFD có:

AH⊥BC, CF⊥AD

AD=DC ( Δ ACD cân tại D)

∠HDA =∠ FDC ( vì đối đỉnh )

⇒ Δ vuông AHD = Δ vuông CFD ( cạnh huyền - góc nhọn)

⇒ HA= FC( 2 cạnh tương ứng ) (3)

và HD=DF ( 2 cạnh tương ứng)⇒ ∠DHF =∠DFH =\(\dfrac{180^0-g\text{óc}HDF}{2}\) (theo tính chất Δ cân)(4)

Ta có: ΔDAC cân tại D (cmt)⇒∠ADC = 180\(^o\) - (∠DAC+ ∠ DCA)

=180\(^o\) -( 30\(^o\) +30\(^o\) )

= 120\(^o\)

Ta có ∠ADC = ∠ HDF= 120\(^o\) ( vì đối đỉnh )

Thay ∠HDF = 120\(^o\) vào ( 4 ) ta có:∠ HFD =(180\(^o\)- 120\(^o\)) : 2 =30\(^o\)(5)

ΔABD đều⇒ đường cao AH đồng thời là phân giác∠ BAD

⇒ ∠HAD= ∠BAD :2= 60\(^o\) :2 =30\(^o\)(6)

Từ (5),(6) ⇒ ∠HAD =∠HFD ⇒HA =HF (tính chất Δ cân) (7)

Từ (3), (7) ⇒HA =HF=FC

Cong Anh Le
29 tháng 5 2018 lúc 21:09

@Lê Thị Diệu Đan xem qua


Các câu hỏi tương tự
NU NGUYEN
Xem chi tiết
Phùng Đức
Xem chi tiết
crewmate
Xem chi tiết
h.zang
Xem chi tiết
Trịnh Tuyết
Xem chi tiết
crewmate
Xem chi tiết
Lệ Nguyễn Đoàn Nhật
Xem chi tiết
crewmate
Xem chi tiết
hue nguyen
Xem chi tiết