Cho tam giác ABC vuông tại C, có góc A=60 độ, Tia phân giác của góc BAC cắt BC tại E, kẻ EK vuông góc với AB ( K thuộc AB ), kẻ BD vuông góc với AE( D thuộc AE) a, tính góc ABC b, chứng minh tam giac AKE c, AE là đường trung trực của đoạn thẳng Ck d,chứng minh KA bằng KB e, chứng minh tam giác KBE = tam giác DBE
a: \(\widehat{ABC}=30^0\)
b: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
c: Ta có: ΔACE=ΔAKE
nên AC=AK; EC=EK
hay AE là đường trung trực của CK
d: Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB