đặc \(C\left(x_c\overset{.}{,}y_c\right)\)
\(\Rightarrow\overrightarrow{AC}\left(x_c+2\overset{.}{,}y_c\right)\) , \(\overrightarrow{BC}\left(x_c-2\overset{.}{,}y_c\right)\)
vì \(AC\perp BC\Rightarrow\left(x_c+2\right)\left(x_c-2\right)+y_c^2=0\) ..............(1)
ta có : \(\left[{}\begin{matrix}y_G=\dfrac{y_c}{3}=\dfrac{-1}{3}\\y_G=\dfrac{y_c}{3}=\dfrac{1}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y_c=-1\\y_c=1\end{matrix}\right.\) (vì G là trọng tâm tam giác \(ABC\) và có khoảng cách với \(ox\) là \(\dfrac{1}{3}\)
từ (1) ta có : nếu \(y_c=-1\Rightarrow x_c=\pm\sqrt{3}\) , với \(y_c=1\Rightarrow x_c=\pm\sqrt{3}\)
\(\Rightarrow C\left(-1\overset{.}{,}-\sqrt{3}\right)\) , \(C\left(-1\overset{.}{,}\sqrt{3}\right)\) , \(C\left(1\overset{.}{,}-\sqrt{3}\right)\) , \(C\left(1\overset{.}{,}\sqrt{3}\right)\)
vậy .....................................................................................................................