a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: AC>AB
=>AC>CE
c: góc BAM=góc CEA
mà góc CEA>góc CAM
nên góc BAM>góc CAM
a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: AC>AB
=>AC>CE
c: góc BAM=góc CEA
mà góc CEA>góc CAM
nên góc BAM>góc CAM
Cho tam giác ABC nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA (Vẽ hình).
a) Chứng minh tam giác AMB bằng tam giác DMC và AB song song với CD.
b) Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh BE = CD.
c) Vẽ đường thẳng vuông góc với AB tại B cắt đoạn thẳng MD tại I. Trên tia MA lấy điểm F sao cho MF = MI. Chứng minh CF vuông góc với AB.
Bài 4 (3 điểm): Cho ∆ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA
lấy điểm E sao cho ME = MA. Chứng minh rằng:
a. ∆ = ∆ AMB EMC b. AC CE ⊥ c. BC AM
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF.
Cho tam giác ABC cân tại A có AM là đường trung tuyến
a) chứng minh tam giác AMB bằng tam giác AMC
b)trên tia đối của MA lấy điểm D sao cho MA=MD chứng mình BC là tia phân giác của góc ABD
c)lấy điểm E trên đoạn MC sao cho EC =2EM gọi I là trung điểm của DC chứng mình 2EI < AB+CE
Cho tam giác ABC có M là trung điểm BC . Trên tia AM lấy điểm D sao cho MA = MD a) Chứng minh tam giác MAC = tam giác MDB b ) Chứng minh AC song song với BD c) trên các đoạn thẳng AC ; BD lần lượt lấy các điểm E;F sao cho CE= BF Chứng minh M;E;F thẳng hàng
Cho tam giác ABC vuông tại A, trung điểm M của cạnh BC. Trên tia đối của
tia MA, lấy điểm D sao cho MA = MD.
a) Chứng minh tam giác MAB= tam giác MDC.
b) Chứng minh AB//CD.
c) Lấy E là trung điểm AC, kẻ MF vuông góc BD , chứng ming ba điểm E, M, F thẳng hàng.
Cho tam giác ABC có: AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD. Chứng minh rằng:
a, tam giác ABM = TAM GIÁCDCM
b, GÓC BAM = GÓC MDC
c, AB // DC
MỌI NGƯỜI GIÚP MIK VS NHÉ
Cho tam giác ABC cân tại A, AM là đường trung tuyến
a, Chứng minh rằng AM vuông góc BC
b, Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng tam giác BMD bằng tam giác CMA. Từ đó suy ra BD = AC
c, tính số đo các cạnh tam giác MBD biết AM = 4 cm, BC = 6 cm
d, Trên tia đối của tia CB lấy tia lấy điểm E sao cho CB = CE. Chứng minh rằng C là trọng tâm của tam giác ABE