a) Xet △DEC va △DBC co:
\(\left\{{}\begin{matrix}ECD=BCD\\chungDC\\DEC=DBC=90\end{matrix}\right.\)
=> △DEC=△DBC (g.c.g)
=> DE=DB (CTU)
b) Xet tam giac vuong AED co: AD>ED ( goc AED> goc A)
ma DE=DB => AD>DB
a) Xet △DEC va △DBC co:
\(\left\{{}\begin{matrix}ECD=BCD\\chungDC\\DEC=DBC=90\end{matrix}\right.\)
=> △DEC=△DBC (g.c.g)
=> DE=DB (CTU)
b) Xet tam giac vuong AED co: AD>ED ( goc AED> goc A)
ma DE=DB => AD>DB
Cho tam giác ABC vuông tại A tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho AB = BE. a/ Chứng minh AD = DE và DE vuông góc BC b/ So sánh AB và EC
Bài 1. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt cạnh AC tại D. Vẽ đường thẳng qua A vuông góc với BD cắt BC tại E.
a) Chứng minh BA=BE b) Chứng minh tam giác BED là tam giác vuông. c) So sánh AD và DC.
Cho tam giác ABC vuông tại A BM là phân giác của góc B từ M kẻ ME với BC, ME cắt BA tại K
a) CHo AB=3cm; BC=5cm. Tính AC?
b)Chứng minh tam giác ABM= tam giác EBM
c) Chứng minh tam giác AKC cân?
d) Góc ABC bằng 2 lần góc MKC
Cho tam giác ABC vuông tại A, D là điểm thuộc cạnh AC. Chứng minh AB<DB<BC.
cho tam giác ABC vuông tại A vẽ tia phân giác BD của góc ABC kẻ DE vuông góc BC AB cắt DE ở F BD cắt CF tại H trên tia đối của tia DF lấy điểm K sao cho DK=DF lấy I trên CD sao cho CI=2DI cm
a BF=BC
b K,I,H thẳng Hàng
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC