Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tnpa

cho tam giác abc vuông tại b, đường cao BH a) biết ab=6cm , bc =8cm . tính ac , bh , ha , hc b) kẻ hd vuông góc ab tại D . chứng minh AB.BD=AH.HC c) kẻ tia phân giác của góc BAC cắt BH tại E , cắt BC tại K . chứng minh BE.BK=HE.KC

Nguyễn Lê Phước Thịnh
15 tháng 9 2021 lúc 20:56

b: Xét ΔBHA vuông tại H có HD là đường cao ứng với cạnh huyền BA, ta được:

\(BD\cdot BA=BH^2\left(1\right)\)

Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:

\(HA\cdot HC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(BD\cdot BA=HA\cdot HC\)

Y NHAT
15 tháng 9 2021 lúc 20:58

Cho tam giác ABC vuông tại b, đường cao BH.

a,CM: tam giác ABH đồng dạng với tam giác ACD suy ra AB2AB2=AH.AC

b, tính AC, BH biết AB=6cm, BC=8cm

c, đường phân giác của góc CAB cắt BH và BC tại D và E. CM: DH.EC=EB.DB

d, gọi I, K lần lượt là hình chiếu của H lên AB và BC. CM:BH3BH3= AI.CK.AC

câu d thôi nhé


Các câu hỏi tương tự
Bánh Canh Chua Ngọt
Xem chi tiết
Phương Nguyễn
Xem chi tiết
Dii Quèngg
Xem chi tiết
Văn Thị Kim Thoa
Xem chi tiết
GGAD
Xem chi tiết
Lynn Nguyễn
Xem chi tiết
Khong Ann
Xem chi tiết
Tran Hai Nam
Xem chi tiết
Chese Nguyễn
Xem chi tiết
kietdeptrai
Xem chi tiết