a. xét tam giác ABH và tam giác MBH có:
góc BAH= góc BMH=90 độ
BH chung
góc ABH= góc MBH(BH là tia p/g của góc ABC)
=> tam giác ABH= tam giác BMH(ch-gn)
a. xét tam giác ABH và tam giác MBH có:
góc BAH= góc BMH=90 độ
BH chung
góc ABH= góc MBH(BH là tia p/g của góc ABC)
=> tam giác ABH= tam giác BMH(ch-gn)
Cho tam giác ABC cân tại A, (góc A <900), gọi M là trung điểm của BC.
a) Chứng minh tam giác AMB = tam giác AMC và AM là tia phân giác của góc A.
b) Kẻ BH vuông góc AC (H thuộc AC), CK vuông góc AB (K thuộc AB). Chứng minh tam giác CHB = tam giác BKC.
c) Gọi I là giao điểm của BH và CK. Chứng minh A, I, M thẳng hàng.
Cho tam giác ABC có góc A=90 độ và đường phân giác BH ( H thuộc AC ). kẻ HM vuông góc với BC ( M thuộc BC ). Gọi N là giao điểm của AB và MH. Chứng minh:
a) tam giác ABH bằng tam giác MBH
b) BH là đường trung trực của đoạn thẳng AM
c) AM // CN
d) BH vuông góc với CN
Cho tam giác ABC cân tại A(A<90 độ),vẽ AH vuông góc với BC tại H.Chứng minh tam giác ABH=tam giác ACH.Cho biết AH=4,BH=3.Tính AB.Qua H vẽ đường thẳng song song với BC cắt AB tại M.Gọi G là giao điểm của CM và AH.
Chứng minh G là trọng tâm của tam giác ABC và tính AG.
Chứng minh CG<(CA+AB)/3
cho ∆abc vuông tại a tia phân giác của góc ABC cắt ac tại i kẻ ih vuông bc. Gọi k là giao điểm của ab và hi. Chứng minh rằng : a. ∆abi = ∆hbi b. Bi là đg trung trực của đoạn thẳng ah c. ∆abh là tam giác đều d. Bi vuông ck
Cho tam giác ABC M là trung điểm của BC trên tia đối của ma lấy điểm D sao cho MD = ma a chứng minh tam giác amb bằng tam giác amc và AB song song CD B Chứng minh tam giác ABC bằng tam giác BM B và AC song song BD C Gọi M là trung điểm của AC và am cắt BM tại g chứng minh C gần đi qua trung điểm của ABd bn cắt cm tại k và h là trung điểm của cd c /m 3 điểm A ,H,K THẲNG hàng e gọi I là trung điểm của ab di cắt bm tại f c/m m là trung điểm của fk
Cho tam giác ABC cân tại A có góc A nhỏ hơn 90 độ, phân giác AD ( D thuộc BC). Kẻ đường cao BE cắt AD tại H
a) Chứng minh CH vuông góc với AB
b) Gọi F là giao điểm của CH và AB. Chứng minh AD là trung trực của đoạn EF
c)Kẻ EI vuông góc với HC tại I; FJ vuông góc với HB tại J. Chứng minh các đường thẳng EI, FJ và AD cùng đi qua một điểm O
d) Chứng minh AC - AF> OF - OC
Các bạn ơi giúp mình với nhé!
Cho tam giác ABC vuông cân tại A , trung tuyến AM và một diểm D trên cạnh BC ( D khác M ) . Hạ BH và CK vuông góc với đường thẳng AD ( H, K thuộc AD . Gọi giao điểm của BH và CK với AM lần lượt là E và F a) góc MAB =? b) ∆AHB = ∆ CKA c) ∆DEF vuông cân
Bài 18: Cho tam giác ABC, A=90 độ đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a/ AE = EH b/Tam giác ABC=Tam giác HBK c/ AH // KC
d/ Nếu cho góc ABC=60 độ. Chứng minh: AC + KH > 3.AH
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .