Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
zZSleeperZz

Cho tam giác ABC vuông tại A,đường cao AH,gọi D,E lần lượt là hình chiếu của H trên AB,AC.Chứng minh rằng √HB.HC=3√BD.CE.BC. 3 là căn nhỏ nha

 

 

 

An Thy
15 tháng 7 2021 lúc 9:20

ý bạn là chứng minh \(\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)

tam giác ABC vuông tại A có AH là đường cao 

\(\Rightarrow HB.HC=AH^2\Rightarrow\sqrt{HB.HC}=AH\)

Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.HC\right)^2=BH^2.CH^2\)

tam giác AHB vuông tại H có HD là đường cao \(\Rightarrow BH^2=BD.BA\)

tam giác AHC vuông tại H có HF là đường cao \(\Rightarrow CH^2=CE.CA\)

\(\Rightarrow BH^2.CH^2=BD.BA.CE.CA=BD.CE.\left(AB.AC\right)\)

tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\Rightarrow BD.CE.BC.AH=AH^4\)

\(\Rightarrow BD.CE.BC=AH^3\Rightarrow\sqrt[3]{BD.CE.BC}=AH\)

\(\Rightarrow\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)


Các câu hỏi tương tự
Nguyễn Long
Xem chi tiết
hương trà nguyễn thị
Xem chi tiết
👁💧👄💧👁
Xem chi tiết
nguyễn hà phương
Xem chi tiết
Lynn Nguyễn
Xem chi tiết
Bánh Canh Chua Ngọt
Xem chi tiết
Fuya~Ara
Xem chi tiết
Nguyễn Long
Xem chi tiết
Lmanh
Xem chi tiết