ý bạn là chứng minh \(\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)
tam giác ABC vuông tại A có AH là đường cao
\(\Rightarrow HB.HC=AH^2\Rightarrow\sqrt{HB.HC}=AH\)
Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.HC\right)^2=BH^2.CH^2\)
tam giác AHB vuông tại H có HD là đường cao \(\Rightarrow BH^2=BD.BA\)
tam giác AHC vuông tại H có HF là đường cao \(\Rightarrow CH^2=CE.CA\)
\(\Rightarrow BH^2.CH^2=BD.BA.CE.CA=BD.CE.\left(AB.AC\right)\)
tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH.BC=AB.AC\)
\(\Rightarrow BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\Rightarrow BD.CE.BC.AH=AH^4\)
\(\Rightarrow BD.CE.BC=AH^3\Rightarrow\sqrt[3]{BD.CE.BC}=AH\)
\(\Rightarrow\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)