a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
c. Ta có: AD là phân giác góc A(gt)
⇒ AB/AC=DB/DC (tính chất phân giác trong tam giác)
⇔ 9/12=DB/(15-DB) ⇔ 12DB= 9(15-BD) =135-9BD
⇔ 21BD=135 ⇔ BD=6.4cm
⇒ CD= BC-BD= 15-6.4 =8.6cm
Xét ΔHAB và ΔHAC
. AHB=AHC=90
. ACH=BAH (cùng phụ góc B)
⇒ ΔHAB~ΔHAC(g.g) ⇒ SΔHAB/SHAC= (AB/AC)2= (9/12)2 =9/16