cho tam giác ABC vuông tại A; BD là phân giác của góc B (D thuộc AC). trên tia BC lấy điểm E sao cho BA = BE. a) chứng minh rằng: tam giác ABD = tam giác EBD và DE vuông góc với BE. b) chứng minh: BD là đường trung trực của đoạn tthẳng AE. c) Kẻ AH vuông góc với BC tại H. CHỨNG minh rằng: AD < DH
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy D sao cho HA = HD. Trên tia đối của tia BC lấy E sao cho BE = BC. Đường thẳng AB cắt DE tại M. Chứng minh rằng M là trung điểm của DE
Bài 1: Tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD. Kẻ CK vuông góc với AE. Chứng minh rằng :
a) Chứng minh: DADE cân và BH = CK
b) ABH = ACK
c) Gọi O là giao điểm của HB và KC. Chứng minh OBC cân.
d) Chứng minh AO là tia phân giác của góc DAE
e) Gọi I là trung điểm của BC. Chứng minh: A, I, O thẳng hàng.
Cho tam giác ABC cân tại A , có góc A nhỏ hơn 90 độ ,M là trung điểm của đoạn BC
a, Chứng minh M là đường trung trực của đoạn BC
b, Đường trung trực d của AC cắt CB tại D . Chứng minh góc DAC = góc ABC
c, Trên tia đối của AD lấy E sao cho AE=BD . Chứng minh đường trung trực DE đi qua C.
Cho tam giác ABC cân tại A ( góc A < 90 độ ). Đường trung trực cạnh AC cắt tia CB tại D. Trên tia đối của tia AD lấy điểm E sao cho AE=BD. Chứng minh:
a, Tam giác ADC cân
b, góc DAC = góc ABC
c, AD = CE
d, Lấy F là trung điểm DE. Chứng minh CF là đường trung trực của DE
Cho tam giác ABC cân tại A , có góc A nhỏ hơn 90 độ ,M là trung điểm của đoạn BC
a, Chứng minh M là đường trung trực của đoạn BC
b, Đường trung trực d của AC cắt CB tại D . Chứng minh góc DAC = góc ABC
c, Trên tia đối của AD lấy E sao cho AE=BD . Chứng minh đường trung trực DE đi qua C.
Cho tam giác ABC. Gọi M là trung điểm của của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA. Kẻ đường cao AH. Trên tia AH lấy điểm E sao cho H là trung điểm AE.
a, CD//AB
b, CD=BE
c, CD vuông góc BD
d, ED//BC
cho tam giác ABC vuông tại A có đường trung tuyến BN . trên tia đối của tia B lấy D sao choND = NB chứng minh a, AB=CD và AB vuông góc với CD b, AD=BC và AD songsong với BC c, góc ABN=góc CBN
Cho ΔAVC cân tại A. Vẽ phân giác AD ( DϵBC). Kẻ DM ⊥ AB (MϵAB), DN⊥ AC (N ϵAC)
a) CM: AM=AN
b) CM: MN//BC
c) Trên tia đối của tia MD lấy điểm E sao cho MD= ME, trên tia đối của tia ND lấy điểm F sao cho ND=NF. CM: ΔAEF cân
d) QUa N kẻ đường thẳng vuông góc với BC, cắt MD tại K. Gọi giao điểm cả NK và BC là I; MI cắt DN tại Q. CM: AD, MN, KQ đồng quy tại 1 điểm