cho tam giác nhọn ABC (AB<AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh rằng tam giác ABM bằng tam giác DCM. Từ đó suy ra AB= CD.
b) Kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm E sao cho HA=HE. Chứng minh rằng BE=CD.
c) Gọi I là trung điểm của ED. Tính số đo MID.
Chứng minh góc ABD = góc EBD
Cho AABC vuông tại A ( AB < AC ). Tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điem E sao cho BE= BA.
a) Chứng minh góc ABD = góc EBD
b) Chứng minh BD vuông góc AE
c) Trên tia đối của AB lấy điểm K sao cho BK= BC. Chứng minh E.D.K thăng hàng
Bài 2: Cho tam giác BAC có ba góc nhọn. Vẽ về phía ngoài tam giac ABC các tam giác ABD và ACE vuông tại A sao cho AB = AD, AC = AE. Kẻ AH vuông góc với BC tại H. Gọi M, N thứ tự là chân đường vuông góc kẻ từ D và E đến AH.
a. C/m tam giác ABH bằng tam giác DAM
b. C/m AM + AN = BC
c. C/m AH đi qua trung điểm của DE
Cho tam giác ABC nhọn (AB < AC). Qua điểm A, vẽ đường thẳng xy song song BC ( tia Ay và điểm C thuộc cùng nửa mặt phẳng bờ AB). Trên tia Ay lấy điểm E và trên cạnh BC lấy cạnh D sao cho AE=BD.
A, Chứng minh rằng tam giác ABD = tam giác DEA
B, Kẻ BK và EH cùng vuông góc với AD. Chứng minh BK=EH
C, Trên tia Ax lấy điểm I sao cho AI=DC, biết AI cắt CI tại O. Chứng minh rằng OI=OC và ba điểm B, O, E thẳng hàng
Chỉ Mình Với Ạ. Phần Toán Hình
Cho tam giác ABC có A = 40 độ.Trên tia đối tia AC lấy điểm D trên nửa mặt phẳng bờ AC ko chứa D vẽ tia Dx // BC biết xDC = 70 độ
A) tính số đo góc ABC
B) vẽ tia Ay là tia phân giác BDA chứng minh Ay // AB
C) kẻ AH vuông góc BC(H thuộc BC) chứng minh AH là tia phân giác của BAC
D) kẻ AK vuông góc Dx(K thuộc Dx ) chứng ba điểm H,A,K thẳng hàng.
cho tam giác ABC có AB=AC, M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM = MD. chứn minh rằng
a/ tam giác ABM = tam giác DCM
b/AB//DC
c/AM vuông góc BC
cho tam giác ABC có AB=AC, M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM = MD. chứn minh rằng
a/ tam giác ABM = tam giác DCM
b/AB//DC
c/AM vuông góc BC
Bài 4:
Cho tam giác ABC; gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao MD = MA.
a) Chứng minh: \(\Delta ABM=\Delta DCM\)
b) Chứng minh: AB // CD
c) Kẻ \(BH\perp AM\left(H\varepsilon AM\right),\) \(CK\perp DM\left(K\varepsilon DM\right)\), cho biết MK = 1,5cm. Tính độ dài của đoạn thẳng HK.
Bài 5:
Cho 3 số thực a, b, c thỏa mãn \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\)
Chứng minh rằng: 4(a – b)(b – c) = (c – a)2.
cho tam giác abc có ab = ac lấy điểm d trên cạnh ab , điểm e trên cạnh ac sao cho ad = ae
a, chứng minh rằng be =cd
b, gọi o là giao điểm của be và cd chứng minh rằng tam giác bod = tam giác coe .