a:
BC=10cm
Xét ΔABC có BD là phân giác
nên DA/DC=BA/BC=6/10=3/5
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: \(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
nên AH=4,8cm
\(S_{HBA}=\dfrac{HA\cdot HB}{2}=\dfrac{4.8\cdot3.6}{2}=2.4\cdot3.6=8.64\left(cm^2\right)\)
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Vì BD là pg \(\dfrac{DA}{DC}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)
b, Xét tam giác ABH và tam giác CBA ta có
^B _ chung
^AHB = ^CAB = 900
Vậy tam giác ABH ~ tam giác CBA (g.g)
=> AB/BC = BH/AB => AB^2 = BH.BC
c, Ta có \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{48}{2}=24cm^2\)
Vậy \(\dfrac{S_{ABC}}{S_{HBA}}=\left(\dfrac{BC}{AB}\right)^2\Rightarrow\dfrac{24}{S_{HBA}}=\dfrac{100}{36}\Rightarrow S_{HBA}=\dfrac{216}{25}cm^2\)