Cho đường tròn (O;R), đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia đối NM lấy điểm C nằm ngoài đường tròn (O;R) sao cho đoạn thẳng AC cắt đương tròn tại k khác A. Hai day MN và BK cắt nhau ở E. Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F.
a) Chứng minh tứ giác AHEK nội tiếp.
b) Chứng minh tam giác NFK cân và EM. NC = EN. CM.
c) Giả sử KE = KC. Chứng minh OK// MN và KM2 + KN2 = 4R2
Cho đoạn thẳng AB, điểm C nằm giữa A và B. Vẽ về một phía của AB các nửa đường tròn có đường kính theo thứ tự là AB, AC, CB. Đường vuông góc với AB tại C cắt nửa đường tròn lớn tại D. DA, DB cắt các nửa đường tròn có đường kính AC, CB theo thứ tự tại M, N
a) Tứ giác DMCN là hình gì ? Vì sao ?
b) Chứng minh hệ thức DM.DA = DN.DB
c) Chứng minh MN là tiếp tuyến chung của các nửa đường tròn có đường kính AC và CB
d*) Điểm C ở vị trí nào trên AB thì MN có độ dài lớn nhất ?
cho nửa đường tròn tâm O bán kính r đường kính BC. A nằm trên đường tròn, kẻ AH vuông góc với BC gọi I và K lần lượt là điểm đối xứng của H qua AB và AC. đường thẳng IK và tia CA cắt tiếp tuyến kẻ từ B của đường tròn lần lượt tại M và N .gọi e là giao của IH và AB gọi F là giao KH và AC a) chứng minh I,A,K thẳng hàng và IK là tiếp tuyến của (O) b)chưngs minh: 1/BH bình= 1/AB bình +1/AN bình *Vẽ giúp em hình nx ạ em cảm ơn
Cho nửa đường tròn (O; R) đường kính AB. Kẻ Ax và By là hai tiếp tuyến của nửa đường tròn tại A và B. Trên Ax lấy điểm C bất kì, đường thẳng qua O và vuông góc với OC cắt By tại D. a) Chứng minh AC. BD = R2 . b) Chứng minh tam giác COD đồng dạng với tam giác ODB. c) Chứng minh CD là tiếp tuyến của (O). e) Tìm vị trí của điểm C trên Ax để tứ giác ACDB có chu vi nhỏ nhất.
Cho đường tròn (O;R) đường kính AC. Trên đoạn thẳng OC lấy điểm B và vẽ đường tròn (O') có đường kính BC. Gọi M là trung điểm của AB, qua M kẻ đây cung vuông góc với AB cắt đường tròn (O) tại D và E. Nối CD cắt đường tròn (O') Tại i
a)Tứ giác DAEB là hình gì? vì sao?
b) Chứng minh MI=MD và MI là tiếp tuyến của (O')
c) Gọi H là hình chiếu của i trên BC. Chứng minh CH.MB=BH.MC
cho (O;R) đường kính AB, C thuộc (O;R)kẻ tiếp tuyến tại A, tiếp tuyến này cắt tia BC ở D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E. Đường thẳng kẻ qua O vuông góc BC tại N cắt tia EC ở F. Gọi H là hình chiếu của C trên AB, AC cắt OE tại M
CMR: Đường tròn ngoại tiếp △ HMN luôn đi qua 1 điểm cố định.
mong mọi người giúp e ạ.
Cho đường tròn tâm O bán kính R và đường thẳng d cố định không cắt đường tròn . Từ điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm) . Từ B kẻ đường thẳng vuông góc với OH tại H , trên tia đối của tia HB lấy điểm C sao cho HC=HB.
A,Chứng minh điểm C thuộc (O;R) và AC là tiếp tuyến của đường tròn (O)
B,Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I , OI cắt BC tại IC. Chứng minh OH.OA=OI.OK=R^2
Cho đường tròn (O;R), dây MN khác đường kính. Hai tiếp tuyến của đường tròn (O;R) tại M và N cắt nhau tại K. Kẻ đường kính NI, kẻ MH vuông góc với NI tại H. a) chứng minh OK vuông góc với ON b) chứng minh ON là phân giác góc HMK c) gọi Q là giao điểm của KI và MH. Chứng minh QH = QM
Cho tam giác ABC vuông tại A (AB<AC) nội tiếp đường tròn (O) có BC là đường kính. Trên nửa mặt phẳng bờ BC chứa điểm A. Kẻ các tiếp tuyến Bx,Cy với đường tròn (O) (BC là tiếp điểm). Từ A kẻ tiếp tuyến với đường tròn (o) cắt Cy tại K. Gọi D là giao điểm của đường thẳng AC và tiếp tuyến Bx
a) Chứng minh góc KAB= góc OAD
b) Gọi E là giao điểm của BK và AC. Chứng minh OE vuông góc với DK