Trong tg ABC có A^+ 90 độ
=> A^ là góc lớn nhất=> B^ và ADB^ nhọn
=> DBC^ nhọn
ADB^ kề bù BDC^
Mà ADB nhọn=> BDC^ tù
Trong tg BDC có: BDC tù
=> BDC^ > DBC^
=> BC> BD( đpcm)
Trong tg ABC có A^+ 90 độ
=> A^ là góc lớn nhất=> B^ và ADB^ nhọn
=> DBC^ nhọn
ADB^ kề bù BDC^
Mà ADB nhọn=> BDC^ tù
Trong tg BDC có: BDC tù
=> BDC^ > DBC^
=> BC> BD( đpcm)
Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B , D thuộc AC , Gọi E là 1 điểm trên cạnh BC sao cho BE=BA
a, Trên tia đối của tia AC lấy điểm F sao cho AF=EC, CMR: CF=BC
Cho tam giác ABC ( A = 90 độ ), phân giác của góc ABC cắt AC tại D, lấy điểm E trên BC sao cho
CMR:
a) Tam giác ABC = Tam giác EBD
b) DE vuông góc với BD
c) BD là đường trung trực của AE
cho tam giác ABC VUÔNG Tại A . gọi I là trung điểm của bc . trên tia đối của IA lấy điểm D sao chi ID=Ia
a) chứng minh rằng tam giá BID = tam giác CIA
b) CMR BD vuông góc AB
c) qua a kẻ đường song song với BC cắt đường thẳng BD tại M. chứng minh. tam giác BAM= tam giác ABC
d) chứng minh rằng AB là phân giác của góc DAM
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
Cho tam giác ABC có AB=BC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC), (E thuộc AB). Gọi O là giao điểm của BD và CE. CM:
a) BD=CE ;
b) Tam giác OEB = Tam giác ODC ;
c) Ao là phân giác của góc BAC.
Giải theo trường hợp bằng nhau t2 của tam giác : cạnh góc cạnh giúp mk nhé!
cho tam giác ABC có AB=AC . Kẻ BD vuông với AC ; CEvuông góc với AB ( Dthuộc AC ; E thuộc AB).Gọi O là giao điểm của BD và CE chứng minh:
a) BD=CE?
b) Tam giác OEB = tam giác ODC?
c) AO là tia phân giác của góc BAC?
d) Gọi K là trung điểm của BC . CM A,O,K thẳng hàng
Cho tam giác ABC vuông góc tại A. Tia phân giác của góc B cắt cạnh Ac tại D.
a)Cho biết góc ACB= 40 độ. Tính số đo góc ABD
b)Trên cạnh BC lấy điểm E sao cho BE=BA
CM: Tam giác BAD = tam giác BEC và BC vuông góc với DE
c) Gọi F là giao điểm của Ba và ED
CMR: tam giác ABC=tam giác EBF
d)Vẽ CK vuông với BD tại K. CM 3 điểm K; F;C thẳng hàng
Cho tam giác ABC cân tại A, phân giác BD (D thuộc AC), vẽ phân giác DM của góc BDC (M thuộc BC. Đường phân giác của góc ADB cắt tia BC tại N. CM : BD = \(\frac{1}{2}\)MN
Cho tam giác ABC vuông ở A và BC = 2.AB. Gọi E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a) Chứng minh DB là phân giác của góc ADE.
b) Chứng minh BD = DC.
c) Tính góc B, góc C của tam giác ABC
Cho tam giác ABC , AB=AC Kẻ Bd và CE vuông góc với Ac, AB.
A) CMR: BD=CE
B) Gọi I là giao điểm của BD và CMR: tam giác AIB=tam giác DIC
C) Ai là tia phân giác của góc BAC