a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
Do đó: ΔBAE=ΔBHE
b: Ta có: BA=BH
EA=EH
Do đó: BE là đường trung trực của AH
c: Xét ΔAEK vuôn tại A và ΔHEC vuông tại H có
EA=EH
góc AEK=góc HEC
Do đo: ΔAEK=ΔHEC
Suy ra:EK=EC
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
Do đó: ΔBAE=ΔBHE
b: Ta có: BA=BH
EA=EH
Do đó: BE là đường trung trực của AH
c: Xét ΔAEK vuôn tại A và ΔHEC vuông tại H có
EA=EH
góc AEK=góc HEC
Do đo: ΔAEK=ΔHEC
Suy ra:EK=EC
Cho ABC có . Vẽ đường phân giác AD (D BC). Qua D dựng đường thẳng vuông góc với AC tại M cắt đường thẳng AB tại N. Gọi I là giao điểm của AD và BM. a. Chứng minh BAD = MAD b. Chứng minh AD là trung trực của BM c. Chứng minh ANC là tam giác đều d. Chứng minh BI < ND
Cho tam giác ABC vuông tại A, gọi E là trung điểm của AC. Vẽ đường thẳng đi qua C vuông góc với CA và cắt đường thẳng BE ở K. Chứng minh
a, EB = EK
b, BC // AK
C BE <AB +BC
Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)
Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi K là giao điểm của AB và HE , chứng minh rằng :
a , Tam giác ABE = tam giác HBE
b, goc HEC= 2 goc ABE
c , BE là đường trung trực của đoạn thẳng AH
d , AE < EC
Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi K là giao điểm của AB và HE , chứng minh rằng :
a , Tam giác ABE = tam giác HBE
b, goc HEC= 2 goc ABE
c , BE là đường trung trực của đoạn thẳng AH
d , AE < EC
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
Cho tam giác ABC vuông tại A. Đường phân giác BE, kẻ \(EH\perp BC\) (\(H\in BC\)). Gọi K là giao điểm của AB và HE. Chứng minh:
a, Tam giác ABE = tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH.
c, EK = EC
d, AE < EC