Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Quang huy

Cho Tam giác abc vuông tại a đường phân giác BD d thuộc ac từ d kẻ dh vuông góc với bc tại h 

A) chứng minh ah vuông góc với bd

B)tính góc bah biết góc adh bằng 110 độ

 

Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 13:08

a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)

Suy ra: BA=BH(hai cạnh tương ứng) và AD=HD(Hai cạnh tương ứng)

Ta có: BA=BH(cmt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AD=HD(cmt)

nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH

\(\Leftrightarrow AH\perp BD\)(đpcm)

b) Xét ΔDAH có DA=DH(cmt)

nên ΔDAH cân tại D(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{DAH}=\dfrac{180^0-\widehat{ADH}}{2}\)(Số đo của một góc ở đáy trong ΔDAH cân tại D)

\(\Leftrightarrow\widehat{DAH}=\dfrac{180^0-110^0}{2}=35^0\)

Ta có: \(\widehat{BAH}+\widehat{DAH}=\widehat{BAD}\)(tia AH nằm giữa hai tia AD,AB)

\(\Leftrightarrow\widehat{BAH}+35^0=90^0\)

hay \(\widehat{BAH}=55^0\)

Vậy: \(\widehat{BAH}=55^0\)


Các câu hỏi tương tự
Lê Ngọc Trường Giang
Xem chi tiết
huyh
Xem chi tiết
Anhh Bằngg
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Lê Bích Thủy
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Xuanvan Doan
Xem chi tiết