a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)
Suy ra: BA=BH(hai cạnh tương ứng) và AD=HD(Hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AD=HD(cmt)
nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH
\(\Leftrightarrow AH\perp BD\)(đpcm)
b) Xét ΔDAH có DA=DH(cmt)
nên ΔDAH cân tại D(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{DAH}=\dfrac{180^0-\widehat{ADH}}{2}\)(Số đo của một góc ở đáy trong ΔDAH cân tại D)
\(\Leftrightarrow\widehat{DAH}=\dfrac{180^0-110^0}{2}=35^0\)
Ta có: \(\widehat{BAH}+\widehat{DAH}=\widehat{BAD}\)(tia AH nằm giữa hai tia AD,AB)
\(\Leftrightarrow\widehat{BAH}+35^0=90^0\)
hay \(\widehat{BAH}=55^0\)
Vậy: \(\widehat{BAH}=55^0\)