Cho tam giác ABC vuông tại A đường cao AH; trung tuyến AM. Biết AH = 40cm; AM = 41cm. Tính tỉ số hai cạnh AB/AC
Cho tam giác ABC có AB=AC, AH là đường trung tuyến. Cho biết AB=29cm, BC=40cm. Tính AH
cho tam giac ABC vuông tại A, có AH là đường cao và AM là tia phân giác của HAC, kẻ MK vuông góc với AC tại K
Chứng minh : AH=AK và BA=BM
Gọi I là giao điểm của đường thẳng MK và AH, chứng minh AM vuông góc CI và KH song song CI
Cho tam giác ABC vuông tại A , kẻ đường cao AH . trên cạnh AC lấy điểm K sao cho AK = AH . kẻ KD vuông góc với AC tại K ( D thuộc BC ) > chứng minh
a, tam giác AHD = tam giác AKD
b, AD là đường trung trực của đoạn thẳng AK
cho 4 tam giác ABC hãy vẽ ở mỗi tam giác các đường trung tuyến AM đường phân giác AI đường cao AH đường trung trực ứng với BC
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trên cạnh AC lấy D sao cho AD = AH. Gọi E là trung điểm của HD. Tia AE cắt BC tại F. Chứng minh rằng:
𝑎)∆𝐴𝐻𝐸 = ∆𝐴𝐷𝐸; 𝐴𝐸 𝑣𝑢ô𝑛𝑔 𝑔ó𝑐 𝑣ớ𝑖 𝐻𝐷.
b) ∆𝐴𝐻𝐹 = ∆𝐴𝐷𝐹
𝑐)𝐷𝐹𝐶 ̂ = 𝐴𝐵𝐶 ̂
(có vẽ hình)
cho tam giác ABC có AB=AC=17cm, BC=30cm Am là là đường trung tuyến,MI vuông góc với AB và MK vuông góc với AC.
a. Chứng minh tam giác ABM=tam giác ACM
b.chúng minh góc AMB =góc AMC=90 độ. Tính Am
c. Từ M kẻ MI vuông góc với AB , MK vuông AC , Biết góc ABC=30 độ. chứng minh tam giác MIK là tam giác đều
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Biết AB 9cm, BC 15cm.
a. Tính AC.
b. Trên tia đối của tia MA lấy điểm D sao cho MD MA. Chứng minh MAB MDC .
c. Gọi K là trung điểm của AC , E là trung điểm của AB , BK cắt AD tại N. Chứng minh BDK cân và
ba điểm E, , N C thẳng hàng