Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O) đường kính BC, biết các tiếp tuyến tại A và B của đường tròn tâm O cắt nhau tại M, \(AH\perp BC\left(H\in BC\right)\). AH cắt CM tại N, AC cắt BM tại D. Trên tia đối của tia AH lấy điểm K sao cho AH = AK. Đường thẳng CK cắt đường tròn (O) và đường thẳng BD lần lượt tại E và F. Tính tỉ số \(\frac{BM}{BF}\) .
Cho tam giác ABC (AB<AC) nối tiếp đường tròn (O) đường kính BC, biết các tiếp tuyến tại A và B của đường tròn tâm O cắt nhau tại M. \(AH\perp BC\left(H\in BC\right)\). AH cắt CM tại N, AC cắt BM tại D. Trên tia đối của tia AH lấy điểm K sao cho AH = AK. Đường thẳng CK cắt đường tròn (O) và đườn thẳng BD lần lượt tại E và F. Tính tỉ số \(\frac{BM}{BF}\)=...
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
cho tam giác ABC vuông tại A đường cao AH chia cạnh huyền thành 2 đoạn BH = 4 cm, HC = 6 cm. gọi M là trung điểm của AC.
a, Tính , AH, AD, AC. Tính số đo góc AMB.
b, kẻ AH\(\perp\)BM K thuộc BM chứng minh tam giác BKC\(\sim\) tam giác BHM
cho tam giác ABC vuông tại A, đường cao AH, tia phân giác của góc B cắt AH tại M, cắt AC tại N, chứng minh tam giác AMN cân
Cho tam giác ABC có AB > AC, đường cao AH. Đường tròn (O) đường kính AH cắt AB ở D và cắt AC ở E.
a) C/m: Tứ giác BDEC nội tiếp.
b) ED cắt BC tại S. C/m : \(SH^2=SB.SC\)
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
Cho tam giác ABC nhọn. Đg tròn đk BC cắt AB,AC tại E,D. BD cắt CE tại H.AH cắt BC tại F.
a) C/m AF vuông góc BC
b) M là trđ AH. C/m MD vuông góc OD.
c) AH cắt DE tại K. C/m K là trực tâm tam giác MBC.