a) Tự CM AHBΔ∼ΔCAB (g.g)
=> \(\widehat{HAB}=\widehat{C}\)
Xét ΔAHB và ΔCHA có:
\(\widehat{AHB}=\widehat{AHC}\) \(=90^0\)
\(\widehat{HAB}=\widehat{C}\) (cmtrn)
=> ΔAHB∼ΔCHA (g.g)
b) Theo câu a) ta có: ΔAHB∼ΔCHA
=> \(\frac{AH}{CH}=\frac{HB}{AH}\Leftrightarrow AH^2=HB.CH\)
\(\Leftrightarrow AH^2=9\times16=144\left(cm\right)\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Ta có: SABC=\(\frac{1}{2}\cdot BC\cdot AH=\frac{1}{2}\cdot\left(BH+HC\right)\cdot AH\)
\(\Leftrightarrow S_{ABC}=\frac{1}{2}\cdot\left(9+16\right)\cdot12=150\left(cm\right)\)
c)Xét ΔABH có: \(\widehat{AHB}\) \(=90^0\)
=> Áp dụng đl Pitago
=> \(BH^2+AH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\left(cm\right)\)
\(\Leftrightarrow AB=25\left(cm\right)\)
Theo câu a) ta có: ΔAHB∼ΔCHA
=> \(\widehat{HBA}=\widehat{HAC}\)
Xét ΔHBA và ΔKAH có:
\(\widehat{AHB}=\widehat{HKA}\) \(=90^0\)
\(\widehat{HBA}=\widehat{HAK}(hay \widehat{HAC})\) (cmtrn)
=> ΔHBA∼ΔKAH (g.g)
=> \(\frac{HB}{KA}=\frac{BA}{AH}\Leftrightarrow HB\cdot AH=BA\cdot KA\)
\(\Leftrightarrow AK=\frac{HB\cdot AH}{BA}=\frac{9\cdot12}{25}=4,32\left(cm\right)\)
Xét ΔAHK có: \(\widehat{AKH}\) \(=90^0\)
=> Áp dụng đl Pitago
=> \(HK^2+AK^2=AH^2\Leftrightarrow HK^2=AH^2-AK^2\)
\(\Leftrightarrow HK^2=12^2-4,32^2=125,3376\left(cm\right)\)
\(\Leftrightarrow HK\approx11,196\left(cm\right)\)
Ta có: 2PAHK=AH+HK+AK=12+11,196+4,32=12,516(cm)
SAHK=\(\frac{1}{2}\cdot HK\cdot AK=\frac{1}{2}\cdot11,196\cdot4,32\approx24,18\left(cm^2\right)\)
ko chắc câu c) mk lm đúng đâu. Tại mk chỉ lm theo ý hiểu thôi